• Title/Summary/Keyword: Butadiene rubber(BR)

Search Result 38, Processing Time 0.023 seconds

A Study on Curing Reaction of 1-Chlorobutadiene-Butadiene Copolymer by Moisture (1-Chlorobutadiene-Butadiene Copolymer의 수가교반응(水架橋反應)에 관한 연구(硏究)(II))

  • Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.305-313
    • /
    • 1987
  • In this study, as one of the developing ways of the functional elastomer, improvement of the functionality of 1-Chlorobutadiene-Butadiene Copolymer(CB-BR) was attempt through curing reaction by moisture. The curing reaction of CB-BR was determined an use of $\gamma$-Aminopropyltriethoxysilane(APS) and $\gamma$-Aminopropylmethyldiethoxysilane(ADS) as a crosslinking agent with filler at so the uncrosslinked elastomer was exposured in the air and curing reaction by moisture in the air was studied. The results obtained are as follows. 1. APS was more efficient than ADS as a crosslinking agent for CB-BR 2. Optimum amount of APS for moisture cured elastomer was r=1.5(at the ratio of $[APS]/[Cl^*]$) also in case(r=1.5), elastomer formed after soaking $T_{72}$ had similar physical properties with elastomer crosslinked by sulfur and it was very good. 3. Uncrosslinked elastomer(CB-BR+APS+Silica) was easily crosslinked by exposure to the air, and the physical properties was also satisfactory.

  • PDF

Optimization of Cure System for the ESBR Silica WMB and BR Silica DMB Blend Compounds

  • Yu, Eunho;Kim, Woong;Ryu, Gyeongchan;Ahn, Byungkyu;Mun, Hyunsung;Hwang, Kiwon;Kim, Donghyuk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Emulsion styrene-butadiene rubber silica wet masterbatch (ESBR silica WMB) technology was studied to develop highly filled and highly dispersed silica compounds, involving the preparation of a composite by co-coagulating the modified silica and the rubber latex in a liquid phase. Previous studies have shown that when manufacturing ESBR silica WMB/Butadiene silica dry masterbatch (BR silica DMB) blend compounds, preparing BR silica dry masterbatch and mixing it with ESBR silica WMB gave excellent results. However, WMB still has the problem of lower crosslink density due to residual surfactants. Therefore, in this study, tetrabenzylthiuram disulfide (TBzTD) was added instead of diphenyl guanidine (DPG) in the ESBR silica WMB/BR silica DMB blend compounds and sulfur/CBS contents were increased to evaluate their cure characteristics, crosslink densities, mechanical properties, and dynamic viscoelastic properties. TBzTD was found to be more effective in increasing the crosslink density and to produce superior properties compared to DPG. In addition, with increasing sulfur/CBS contents, mechanical properties and rolling resistance were enhanced due to high crosslink density, but the abrasion resistance was not significantly changed because of the toughness.

Effect of Functionalized BR Content on the Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Junhwan Jeong;Sanghoon Song;Jin Uk Ha;Daedong Park;Jaeyun Kim;Yeongmin Jung;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.64-72
    • /
    • 2024
  • As air pollution continues to increase owing to increasing traffic centered in urban areas, the tire industry is researching methods to reduce particulate matter. In this study, functionalized lithium butadiene rubber (F-LiBR) was applied to a natural rubber (NR)/butadiene rubber (BR) blend compound often used in truck bus radial (TBR) tire treads. The effect of the functional group that can react with carbon black (CB) in BR was investigated in terms of the dispersion of CB and the compound performance, including the generation of particulate matter. Compounds that were substituted with F-LiBR exhibited enhanced interaction with CB, resulting in excellent filler dispersion. Although F-LiBR exhibited lower crosslinking density and inferior abrasion resistance due to its high vinyl content, the compound with 30 phr of F-LiBR was advantageous in terms of its rolling resistance due to the excellent filler dispersion, which was also effective in reducing the amount of generated particulate matter (up to 56% reduction for PM2.5, and 67% reduction for PM10). The results confirmed the benefits of the introduction of functional groups into TBR tire tread compounds, which can aid in improving the fuel efficiency and reducing particulate matter generation.

The Study on the Optimum Loading of Carbon Black for the Different Kind of Rubber Compounds (고무종류에 따른 카본블랙의 최적 투입량에 관한 연구)

  • Yoon, Chan Ho;Lee, Ihn;Cho, Chun Teck;Chae, Kyu Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.565-572
    • /
    • 1996
  • The optimum loading of carbon black was studied for the rubber compounds of natural rubber(NR), butadiene rubber(BR), and styrene-butadiene rubber(SBR) with different amount of oil. The optimum loading of carbon black was determined by the volume ratio of carbon black and L factor of Lee's theory. The optimum loading of carbon black was confirmed by the examination of physical properties of the rubbers. The optimum loading amounts of carbon black for the each rubber compound were 60 phr for NR, 57 phr for BR, 65 phr for SBR-A, 70 phr for SBR-B, and 76 phr for SBR-C, respectively. The optimum loading of carbon black was increased by 5 phr for every increment of 20 phr of oil content. It was revealed that the optimum loading amount of carbon black determined by L factor is closely related to the tensile strength of the rubber compounds. The optimum loading amount of carbon black was observed at the amount which shows the maximum value of tensile strength.

  • PDF

Effect of NR/BR Blends ratio and Oil Content on the Mechanical Properties of Rubber Isolator at Low Temperature (저온환경에서 NR/BR 블렌드 조성비 및 오일함량이 방진고무재료의 기계적 특성에 미치는 영향)

  • Kim, Wan-Doo;Kim, Wan-Soo;Woo, Chang-Soo;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • New compounds were made using various NR/BR blend ratio and oil content to improve mechanical properties of rubber isolator at low temperature. Mechanical properties were investigated as a function of NR/BR blend ratio and oil content. Hardness and tensile modulus generally increased, but tensile strength and elongation at break decreased with increasing BR content. Hardness, tensile modulus and tensile strength decreased, but elongation at break were nearly the same with increasing oil content. The glass transition temperature of NR and BR were found to be $-50^{\circ}C$ and $-90^{\circ}C$ respectively based on the abrupt drops in storage elastic modulus and peak of loss factor. Two distinct transition temperature were observed in NR/BR blend compounds and each transition point was not affected by blend level indicating incompatible nature of NR/BR blend.

Wear Particulate Matters and Physical Properties of Silica filled ENR/BR Tread Compounds according to the BR Contents

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.243-249
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, we investigated the effect of varying the content of butadiene rubber (BR) on the properties of the rubber compounds and the amount of particulate matter in the TBR tire tread compound. Furthermore, we utilized carbon black in the NR/BR blend compounds owing to its excellent compatibility, and we used silica in the ENR-25/BR blend compounds because it can interact chemically with epoxide groups. The NR/BR blend compounds and the ENR-25/BR blend compounds were evaluated by varying their BR content between 20 phr and 30 phr. The results showed that the ENR-25/BR blend compounds had superior wear resistance than the NR/BR blend compounds. This was caused by the interaction between silica and ENR. In addition, it was confirmed that the increased wear resistance as the BR content increased. Furthermore, compared to the NR/BR blend compounds, ENR-25/BR blend compounds exhibited a lower tan 𝛿 value at 60℃ because silica was used as filler. This indicates a higher fuel efficiency. The measurement results for wear particulate matter showed that as increasing the BR content resulted in generation of less wear particulate matter. This was caused by the increased wear resistance. Moreover, the ENR-25/BR blend compounds with excellent filler-rubber interaction exhibited lower quantities of generated wear particulate matters as compared to the NR/BR blend compounds.

A Study on Curing Reaction of 1-Chlobutadiene-Butadiene Copolymer by Moisture (1-Chlorobutadiene-Butadiene Copolymer의 수가교반응(水架橋反應)에 관한 연구(硏究)(I))

  • Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.3
    • /
    • pp.195-203
    • /
    • 1987
  • In this study, as one of the developing ways of the functional elastomer, improvement of the functionality of CB-BR was attempted through moisture curing reaction. The curing reaction of CB-BR was determined with an use of 3-aminopropyltriethoxysilane(APS) as a crosslinking agent, also a solution reaction with an active chlorine of CB-BR was elucidated by using a reaction kinetics theory and a study of physical property was made through moisture curing on the compound of 3-aminopropyltriethoxysilane and CB-BR The results of this study obtained are as follows : 1) CB-BR reacted easily with APS in the liquid state and the reaction rate coefficient and activation energy were as follows : 2) Optimum pressure condition of moisture cured elastomer(CB-BR+APS) was 20 minutes at $150^{\circ}C$, and the crosslinked elastomer was close to the theoretical value (q=1) for Flory's equation($\frac{\alpha}{\alpha-1}=q{\nu}RT$)

  • PDF

A Study on the Stabilization Effects of 1-Chlorobutadiene-Butadiene Copolymer by Triazine Thiol Derivative (Triazine Thiol 유도체(誘導體)에 의한 1-Chlorobutadiene-Butadiene Copolymer의 안정화효과(安定化效果)에 관한 연구(硏究))

  • Yoo, Chong-Sun;Yamashita, S.;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.2
    • /
    • pp.109-120
    • /
    • 1987
  • In this study, as one of the developing ways of the functional elastomer, improvement of the functionality of CB-BR was attemped through stabilization. At first the stabilization effect of CB-BR and the concentration dependancy in CB-BR were determined. Then, triazine thiol derivative(BPTT) was synthesized by reacting p-aminodiphenylamine with cyanuric chloride. Further the functional mechanism and the effects of the antioxidants were investigated using BPTT together with other various antioxidants in liquid and solid states. The results obtained are as follows: 1) The aging of CB-BR depended on the concentration and temperature. Thus, at a low temperature of $50^{\circ}C$, the aging proceeded with gel formation; at high temperature above $100^{\circ}C$ and in above 4wt% concentration, the aging occured by the formation of gel. And in concentrations below that, the aging proceeds with a decomposition caused by oxygen attacked to elastomer molecules. 2) The effect of antioxidation of CB-BR in the liquid state was at it's best when the MBIZ and BPTT were used at $110^{\circ}C$, 4hrs after the oxidation. 3) The effect of antioxidation of CB-BR in the solid state was the best choice the simultaneous use of NDBC and BPTT at $50^{\circ}C$, 30days after the oxidation.

  • PDF

Evaluation of BR Blending Methods for ESBR/silica Wet Masterbatch Compounds

  • Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • Wet masterbatch (WMB) technology is studied to develop high-content and highly disperse silica-filled compounds. This technology refers to the solidification of surface-modified silica with a rubber solution or latex. Until now, researchs based on styrene butadiene rubber (SBR)/silica WMB has been mainly performed. However, the blending of SBR/silica WMB and BR is not known and is currently under research and development. Therefore, in this study, the BR blending method suitable for emulsion (ESBR)/silica WMB is investigated by measuring their cure characteristics and the mechanical and dynamic viscoelastic properties. As a result, it was confirmed that the blending of ESBR/silica WMB and BR/silica dry masterbatch is most appropriate. However, it showed a disadvantage compared with the conventional mixing method, which was due to the surfactant remained and the sulfuric acid used as the coagulant.

Studies on the Physical properties and Application of EPDM-Polymer Blends. Part 3. Physical Properties for EPDM-BR Blends (EPDM과 각종(各種) Polymer의 Blend에 의(依)한 성능변화(性能變化) 및 그 응용(應用)에 관(關)한 연구(硏究)(제3보(第3報)) EPDM과 Butadiene Rubber의 Blend에 대(對)하여)

  • Kim, Joon-Soo
    • Elastomers and Composites
    • /
    • v.7 no.1
    • /
    • pp.38-44
    • /
    • 1972
  • As a series of the studies of EPDM-polymer blonds, the experiments are concentrated to the investigation of the physical properties of the EPDM-BR blends. The results are shown as follows: 1. In blending, tensile strength and elongation decreased with increase in EPDM contents. 2. The resistance for aging and ozone were much improved after blending. It was effective more :han the ratio of EPDM/BR is 50/50. 3. Tear strength is less influenced after blending and rebound character decreased with increase in EPDM contents.

  • PDF