• Title/Summary/Keyword: Butadiene popcorn polymer

Search Result 2, Processing Time 0.014 seconds

Effects of Inhibition on Formation and Growth of Polymer in Butadiene Extraction Unit (Butadiene Extraction Unit 내의 Polymer 생성 억제 효과)

  • Im, Gyeong
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.63-73
    • /
    • 1992
  • There are many methods of obtaining butadiene described in the literature. In the america it is produced largely from petroleum gases, i.e., by catalytic dehydrogenation of butene of butene-butane mixtures. Butadiene can be recovered from the $C_4$ residue of an olefin plant by distilling off a fraction containing most of the butadiene, catalytically hydrogenating the higher acetylenes to olefins and separating the product from other olefins and isobutane by extraction. Also it can be obtained by cracking naphtha and light oil. Among the individual dienes of commercial importance, 1, 3-butadiene is of first importance. It is used primarily for the production of polymers.In the present paper, it was investigated for a effect of the formation and the growth inhibition of popped corn polymer in butadiene extraction unit. As a result of study, inhibitors, $NaNO_2$ and TBC were good effective for inhibition of the formation and growth in popcorn polymer. The rational formula of popcorn polymer obtained was $(C_4H_6)_x$.

  • PDF

A Study on the Risk of Spontaneous ignition to Butadiene Popcorn Polymer (Butadiene Popcorn Polymer의 자연발화 위험성에 관한 연구)

  • Koo, Chae-Chil;Lee, Jung-Suk;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • This study was conducted to investigate the possibility of spontaneous ignition in Butadiene popcorn polymer, which is used as raw material and product in a chemical plant. A component analysis, thermogravimetric analysis, thermal stability analysis, spontaneous ignition point measurement and accelerated velocity calorimetric analysis were performed. As a result of analysis, various kinds of flammable components were measured and thermogravimetric analysis showed a weight loss of 95.6% in air and 89.2% in nitrogen. As a result of the thermal stability analysis, heat generation started at $88^{\circ}C$ in the air atmosphere, and the heat generation rate increased sharply in the vicinity of the natural ignition point ($220^{\circ}C$). The heat generation started at about $70^{\circ}C$ in nitrogen atmosphere, and the two exothermic peak values were observed up to $450^{\circ}C$. As a result of accelerated rate calorimetry, there was no exothermic phenomenon, and the lowest ignition temperature was $211.7^{\circ}C$ as a result of analysis of natural ignition point. Based on the results obtained from the thermal stability evaluation, it is considered that the possibility of inducing the thermal deformation of the column by the heat of reaction is sufficient.