• Title/Summary/Keyword: Business effectiveness

Search Result 1,607, Processing Time 0.026 seconds

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

Effects of Joining Coalition Loyalty Program : How the Brand affects Brand Loyalty Based on Brand Preference (브랜드 선호에 따라 제휴 로열티 프로그램 가입이 가맹점 브랜드 충성도에 미치는 영향)

  • Rhee, Jin-Hwa
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.87-115
    • /
    • 2012
  • Introduction: In these days, a loyalty program is one of the most common marketing mechanisms (Lacey & Sneath, 2006; Nues & Dreze, 2006; Uncles et al., 20003). In recent years, Coalition Loyalty Program is more noticeable as one of progressed forms. In the past, loyalty program was operating independently by single product brand or single retail channel brand. Now, companies using Coalition Loyalty Program share their programs as one single service and companies to participate to this program continue to have benefits from their existing program as well as positive spillover effect from the other participating network companies. Instead of consumers to earn or spend points from single retail channel or brand, consumers will have more opportunities to utilize their points and be able to purchase other participating companies products. Issues that are related to form of loyalty programs are essentially connected with consumers' perceived view on convenience of using its program. This can be a problem for distribution companies' strategic marketing plan. Although Coalition Loyalty Program is popular corporate marketing strategy to most companies, only few researches have been published. However, compared to independent loyalty program, coalition loyalty program operated by third parties of partnership has following conditions: Companies cannot autonomously modify structures of program for individual companies' benefits, and there is no guarantee to operate and to participate its program continuously by signing a contract. Thus, it is important to conduct the study on how coalition loyalty program affects companies' success and its process as much as conducting the study on effects of independent program. This study will complement the lack of coalition loyalty program study. The purpose of this study is to find out how consumer loyalty affects affiliated brands, its cause and mechanism. The past study about loyalty program only provided the variation of performance analysis, but this study will specifically focus on causes of results. In order to do these, this study is designed and to verify three primary objects as following; First, based on opinions of Switching Barriers (Fornell, 1992; Ping, 1993; Jones, et at., 2000) about causes of loyalty of coalition brand, 'brand attractiveness' and 'brand switching cost' are antecedents and causes of change in 'brand loyalty' will be investigated. Second, influence of consumers' perception and attitude prior to joining coalition loyalty program, influence of program in retail brands, brand attractiveness and spillover effect of switching cost after joining coalition program will be verified. Finally, the study will apply 'prior brand preference' as a variable and will provide a relationship between effects of coalition loyalty program and prior preference level. Hypothesis Hypothesis 1. After joining coalition loyalty program, more preferred brand (compared to less preferred brand) will increase influence on brand attractiveness to brand loyalty. Hypothesis 2. After joining coalition loyalty program, less preferred brand (compared to more preferred brand) will increase influence on brand switching cost to brand loyalty. Hypothesis 3. (1)Brand attractiveness and (2)brand switching cost of more preferred brand (before joining the coalition loyalty program) will influence more positive effects from (1)program attractiveness and (2)program switching cost of coalition loyalty program (after joining) than less preferred brand. Hypothesis 4. After joining coalition loyalty program, (1)brand attractiveness and (2)brand switching cost of more preferred brand will receive more positive impacts from (1)program attractiveness and (2)program switching cost of coalition loyalty program than less preferred brand. Hypothesis 5. After joining coalition loyalty program, (1)brand attractiveness and (2)brand switching cost of more preferred brand will receive less impacts from (1)brand attractiveness and (2)brand switching cost of different brands (having different preference level), which joined simultaneously, than less preferred brand. Method : In order to validate hypotheses, this study will apply experimental method throughout virtual scenario of coalition loyalty program if consumers have used or available for the actual brands. The experiment is conducted twice to participants. In a first experiment, the study will provide six coalition brands which are already selected based on prior research. The survey asked each brand attractiveness, switching cost, and loyalty after they choose high preference brand and low preference brand. One hour break was provided prior to the second experiment. In a second experiment, virtual coalition loyalty program "SaveBag" was introduced to participants. Participants were informed that "SaveBag" will be new alliance with six coalition brands from the first experiment. Brand attractiveness and switching cost about coalition program were measured and brand attractiveness and switching cost of high preference brand and low preference brand were measured as same method of first experiment. Limitation and future research This study shows limitations of effects of coalition loyalty program by using virtual scenario instead of actual research. Thus, future study should compare and analyze CLP panel data to provide more in-depth information. In addition, this study only proved the effectiveness of coalition loyalty program. However, there are two types of loyalty program, which are Single and Coalition, and success of coalition loyalty program will be dependent on market brand power and prior customer attitude. Therefore, it will be interesting to compare effects of two programs in the future.

  • PDF

Differential Effects of Recovery Efforts on Products Attitudes (제품태도에 대한 회복노력의 차별적 효과)

  • Kim, Cheon-GIl;Choi, Jung-Mi
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.1
    • /
    • pp.33-58
    • /
    • 2008
  • Previous research has presupposed that the evaluation of consumer who received any recovery after experiencing product failure should be better than the evaluation of consumer who did not receive any recovery. The major purposes of this article are to examine impacts of product defect failures rather than service failures, and to explore effects of recovery on postrecovery product attitudes. First, this article deals with the occurrence of severe and unsevere failure and corresponding service recovery toward tangible products rather than intangible services. Contrary to intangible services, purchase and usage are separable for tangible products. This difference makes it clear that executing an recovery strategy toward tangible products is not plausible right after consumers find out product failures. The consumers may think about backgrounds and causes for the unpleasant events during the time gap between product failure and recovery. The deliberation may dilutes positive effects of recovery efforts. The recovery strategies which are provided to consumers experiencing product failures can be classified into three types. A recovery strategy can be implemented to provide consumers with a new product replacing the old defective product, a complimentary product for free, a discount at the time of the failure incident, or a coupon that can be used on the next visit. This strategy is defined as "a rewarding effort." Meanwhile a product failure may arise in exchange for its benefit. Then the product provider can suggest a detail explanation that the defect is hard to escape since it relates highly to the specific advantage to the product. The strategy may be called as "a strengthening effort." Another possible strategy is to recover negative attitude toward own brand by giving prominence to the disadvantages of a competing brand rather than the advantages of its own brand. The strategy is reflected as "a weakening effort." This paper emphasizes that, in order to confirm its effectiveness, a recovery strategy should be compared to being nothing done in response to the product failure. So the three types of recovery efforts is discussed in comparison to the situation involving no recovery effort. The strengthening strategy is to claim high relatedness of the product failure with another advantage, and expects the two-sidedness to ease consumers' complaints. The weakening strategy is to emphasize non-aversiveness of product failure, even if consumers choose another competitive brand. The two strategies can be effective in restoring to the original state, by providing plausible motives to accept the condition of product failure or by informing consumers of non-responsibility in the failure case. However the two may be less effective strategies than the rewarding strategy, since it tries to take care of the rehabilitation needs of consumers. Especially, the relative effect between the strengthening effort and the weakening effort may differ in terms of the severity of the product failure. A consumer who realizes a highly severe failure is likely to attach importance to the property which caused the failure. This implies that the strengthening effort would be less effective under the condition of high product severity. Meanwhile, the failing property is not diagnostic information in the condition of low failure severity. Consumers would not pay attention to non-diagnostic information, and with which they are not likely to change their attitudes. This implies that the strengthening effort would be more effective under the condition of low product severity. A 2 (product failure severity: high or low) X 4 (recovery strategies: rewarding, strengthening, weakening, or doing nothing) between-subjects design was employed. The particular levels of product failure severity and the types of recovery strategies were determined after a series of expert interviews. The dependent variable was product attitude after the recovery effort was provided. Subjects were 284 consumers who had an experience of cosmetics. Subjects were first given a product failure scenario and were asked to rate the comprehensibility of the failure scenario, the probability of raising complaints against the failure, and the subjective severity of the failure. After a recovery scenario was presented, its comprehensibility and overall evaluation were measured. The subjects assigned to the condition of no recovery effort were exposed to a short news article on the cosmetic industry. Next, subjects answered filler questions: 42 items of the need for cognitive closure and 16 items of need-to-evaluate. In the succeeding page a subject's product attitude was measured on an five-item, six-point scale, and a subject's repurchase intention on an three-item, six-point scale. After demographic variables of age and sex were asked, ten items of the subject's objective knowledge was checked. The results showed that the subjects formed more favorable evaluations after receiving rewarding efforts than after receiving either strengthening or weakening efforts. This is consistent with Hoffman, Kelley, and Rotalsky (1995) in that a tangible service recovery could be more effective that intangible efforts. Strengthening and weakening efforts also were effective compared to no recovery effort. So we found that generally any recovery increased products attitudes. The results hint us that a recovery strategy such as strengthening or weakening efforts, although it does not contain a specific reward, may have an effect on consumers experiencing severe unsatisfaction and strong complaint. Meanwhile, strengthening and weakening efforts were not expected to increase product attitudes under the condition of low severity of product failure. We can conclude that only a physical recovery effort may be recognized favorably as a firm's willingness to recover its fault by consumers experiencing low involvements. Results of the present experiment are explained in terms of the attribution theory. This article has a limitation that it utilized fictitious scenarios. Future research deserves to test a realistic effect of recovery for actual consumers. Recovery involves a direct, firsthand experience of ex-users. Recovery does not apply to non-users. The experience of receiving recovery efforts can be relatively more salient and accessible for the ex-users than for non-users. A recovery effort might be more likely to improve product attitude for the ex-users than for non-users. Also the present experiment did not include consumers who did not have an experience of the products and who did not perceive the occurrence of product failure. For the non-users and the ignorant consumers, the recovery efforts might lead to decreased product attitude and purchase intention. This is because the recovery trials may give an opportunity for them to notice the product failure.

  • PDF

Deep Learning-based Professional Image Interpretation Using Expertise Transplant (전문성 이식을 통한 딥러닝 기반 전문 이미지 해석 방법론)

  • Kim, Taejin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.79-104
    • /
    • 2020
  • Recently, as deep learning has attracted attention, the use of deep learning is being considered as a method for solving problems in various fields. In particular, deep learning is known to have excellent performance when applied to applying unstructured data such as text, sound and images, and many studies have proven its effectiveness. Owing to the remarkable development of text and image deep learning technology, interests in image captioning technology and its application is rapidly increasing. Image captioning is a technique that automatically generates relevant captions for a given image by handling both image comprehension and text generation simultaneously. In spite of the high entry barrier of image captioning that analysts should be able to process both image and text data, image captioning has established itself as one of the key fields in the A.I. research owing to its various applicability. In addition, many researches have been conducted to improve the performance of image captioning in various aspects. Recent researches attempt to create advanced captions that can not only describe an image accurately, but also convey the information contained in the image more sophisticatedly. Despite many recent efforts to improve the performance of image captioning, it is difficult to find any researches to interpret images from the perspective of domain experts in each field not from the perspective of the general public. Even for the same image, the part of interests may differ according to the professional field of the person who has encountered the image. Moreover, the way of interpreting and expressing the image also differs according to the level of expertise. The public tends to recognize the image from a holistic and general perspective, that is, from the perspective of identifying the image's constituent objects and their relationships. On the contrary, the domain experts tend to recognize the image by focusing on some specific elements necessary to interpret the given image based on their expertise. It implies that meaningful parts of an image are mutually different depending on viewers' perspective even for the same image. So, image captioning needs to implement this phenomenon. Therefore, in this study, we propose a method to generate captions specialized in each domain for the image by utilizing the expertise of experts in the corresponding domain. Specifically, after performing pre-training on a large amount of general data, the expertise in the field is transplanted through transfer-learning with a small amount of expertise data. However, simple adaption of transfer learning using expertise data may invoke another type of problems. Simultaneous learning with captions of various characteristics may invoke so-called 'inter-observation interference' problem, which make it difficult to perform pure learning of each characteristic point of view. For learning with vast amount of data, most of this interference is self-purified and has little impact on learning results. On the contrary, in the case of fine-tuning where learning is performed on a small amount of data, the impact of such interference on learning can be relatively large. To solve this problem, therefore, we propose a novel 'Character-Independent Transfer-learning' that performs transfer learning independently for each character. In order to confirm the feasibility of the proposed methodology, we performed experiments utilizing the results of pre-training on MSCOCO dataset which is comprised of 120,000 images and about 600,000 general captions. Additionally, according to the advice of an art therapist, about 300 pairs of 'image / expertise captions' were created, and the data was used for the experiments of expertise transplantation. As a result of the experiment, it was confirmed that the caption generated according to the proposed methodology generates captions from the perspective of implanted expertise whereas the caption generated through learning on general data contains a number of contents irrelevant to expertise interpretation. In this paper, we propose a novel approach of specialized image interpretation. To achieve this goal, we present a method to use transfer learning and generate captions specialized in the specific domain. In the future, by applying the proposed methodology to expertise transplant in various fields, we expected that many researches will be actively conducted to solve the problem of lack of expertise data and to improve performance of image captioning.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

The Effects on CRM Performance and Relationship Quality of Successful Elements in the Establishment of Customer Relationship Management: Focused on Marketing Approach (CRM구축과정에서 마케팅요인이 관계품질과 CRM성과에 미치는 영향)

  • Jang, Hyeong-Yu
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.119-155
    • /
    • 2008
  • Customer Relationship Management(CRM) has been a sustainable competitive edge of many companies. CRM analyzes customer data for designing and executing targeted marketing analysing customer behavior in order to make decisions relating to products and services including management information system. It is critical for companies to get and maintain profitable customers. How to manage relationships with customers effectively has become an important issue for both academicians and practitioners in recent years. However, the existing academic literature and the practical applications of customer relationship management(CRM) strategies have been focused on the technical process and organizational structure about the implementation of CRM. These limited focus on CRM lead to the result of numerous reports of failed implementations of various types of CRM projects. Many of these failures are also related to the absence of marketing approach. Identifying successful factors and outcomes focused on marketing concept before introducing a CRM project are a pre-implementation requirements. Many researchers have attempted to find the factors that contribute to the success of CRM. However, these research have some limitations in terms of marketing approach without explaining how the marketing based factors contribute to the CRM success. An understanding of how to manage relationship with crucial customers effectively based marketing approach has become an important topic for both academicians and practitioners. However, the existing papers did not provide a clear antecedent and outcomes factors focused on marketing approach. This paper attempt to validate whether or not such various marketing factors would impact on relational quality and CRM performance in terms of marketing oriented perceptivity. More specifically, marketing oriented factors involving market orientation, customer orientation, customer information orientation, and core customer orientation can influence relationship quality(satisfaction and trust) and CRM outcome(customer retention and customer share). Another major goals of this research are to identify the effect of relationship quality on CRM outcomes consisted of customer retention and share to show the relationship strength between two factors. Based on meta analysis for conventional studies, I can construct the following research model. An empirical study was undertaken to test the hypotheses with data from various companies. Multiple regression analysis and t-test were employed to test the hypotheses. The reliability and validity of our measurements were tested by using Cronbach's alpha coefficient and principal factor analysis respectively, and seven hypotheses were tested through performing correlation test and multiple regression analysis. The first key outcome is a theoretically and empirically sound CRM factors(marketing orientation, customer orientation, customer information orientation, and core customer orientation.) in the perceptive of marketing. The intensification of ${\beta}$coefficient among antecedents factors in terms of marketing was not same. In particular, The effects on customer trust of marketing based CRM antecedents were significantly confirmed excluding core customer orientation. It was notable that the direct effects of core customer orientation on customer trust were not exist. This means that customer trust which is firmly formed by long term tasks will not be directly linked to the core customer orientation. the enduring management concerned with this interactions is probably more important for the successful implementation of CRM. The second key result is that the implementation and operation of successful CRM process in terms of marketing approach have a strong positive association with both relationship quality(customer trust/customer satisfaction) and CRM performance(customer retention and customer possession). The final key fact that relationship quality has a strong positive effect on customer retention and customer share confirms that improvements in customer satisfaction and trust improve accessibility to customers, provide more consistent service and ensure value-for-money within the front office which result in growth of customer retention and customer share. Particularly, customer satisfaction and trust which is main components of relationship quality are found to be positively related to the customer retention and customer share. Interactive managements of these main variables play key roles in connecting the successful antecedent of CRM with final outcome involving customer retention and share. Based on research results, This paper suggest managerial implications concerned with constructions and executions of CRM focusing on the marketing perceptivity. I can conclude in general the CRM can be achieved by the recognition of antecedents and outcomes based on marketing concept. The implementation of marketing concept oriented CRM will be connected with finding out about customers' purchasing habits, opinions and preferences profiling individuals and groups to market more effectively and increase sales changing the way you operate to improve customer service and marketing. Benefiting from CRM is not just a question of investing the right software, but adapt CRM users to the concept of marketing including marketing orientation, customer orientation, and customer information orientation. No one deny that CRM is a process or methodology used to develop stronger relationships being composed of many technological components, but thinking about CRM in primarily technological terms is a big mistake. We can infer from this paper that the more useful way to think and implement about CRM is as a process that will help bring together lots of pieces of marketing concept about customers, marketing effectiveness, and market trends. Finally, a real situation we conducted our research may enable academics and practitioners to understand the antecedents and outcomes in the perceptive of marketing more clearly.

  • PDF

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.