• Title/Summary/Keyword: Business Trend

Search Result 1,519, Processing Time 0.033 seconds

A Study on the Needs Analysis of University-Regional Collaborative Startup Co-Space Composition (대학-지역 연계 협업적 창업공간(Co-Space) 구성 요구도 분석)

  • Kim, In-Sook;Yang, Ji-Hee;Lee, Sang-Seub
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.159-172
    • /
    • 2023
  • The purpose of this study is to explore a collaborative start-up space(Co-Space) configuration plan in terms of university-regional linkage through demand analysis on the composition of university-regional linkage startup space. To this end, a survey was conducted for request analysis, and the collected data were analyzed through the t-test, The Lotus for Focus model. In addition, FGI was implemented for entrepreneurs, and the direction of the composition of the university-region Co-Space was derived from various aspects. The results of this study are as follows. First, as a result of the analysis of the necessity of university-community Co-Space, the necessity of opening up the start-up space recognized by local residents and the necessity of building the start-up space in the region were high. In addition, men recognized the need to build a space for start-ups in the community more highly than women did women. Second, as a result of analysis of demands for university-regional Co-Space, the difference between current importance and future necessity of university-regional Co-Space was statistically significant. Third, as a result of analysis on the composition of the startup space by cooperation between universities and regions, different demands were made for composition of the startup space considering openness and closeness, and for composition of the startup space size. The implications of the study are as follows. First, Co-Spaces need to be constructed in conjunction with universities in accordance with the demands of start-up companies in the region by stage of development. Second, it is necessary to organize a customized Co-Space that takes into account the size and operation of the start-up space. Third, it is necessary to establish an experience-based open space for local residents in the remaining space of the university. Fourth, it is necessary to establish a Co-Space that enables an organic network between local communities, start-up investment companies, start-up support institutions, and start-up companies. This study is significant in that it proposed the regional startup ecosystem and the cooperative start-up space structure for strengthening start-up sustainability through cooperation between universities and local communities. The results of this study are expected to be used as useful basic data for Co-Space construction to build a regional start-up ecosystem in a trend emphasizing the importance of start-up space, which is a major factor affecting start-up companies.

  • PDF

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

Construction of Consumer Confidence index based on Sentiment analysis using News articles (뉴스기사를 이용한 소비자의 경기심리지수 생성)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.1-27
    • /
    • 2017
  • It is known that the economic sentiment index and macroeconomic indicators are closely related because economic agent's judgment and forecast of the business conditions affect economic fluctuations. For this reason, consumer sentiment or confidence provides steady fodder for business and is treated as an important piece of economic information. In Korea, private consumption accounts and consumer sentiment index highly relevant for both, which is a very important economic indicator for evaluating and forecasting the domestic economic situation. However, despite offering relevant insights into private consumption and GDP, the traditional approach to measuring the consumer confidence based on the survey has several limits. One possible weakness is that it takes considerable time to research, collect, and aggregate the data. If certain urgent issues arise, timely information will not be announced until the end of each month. In addition, the survey only contains information derived from questionnaire items, which means it can be difficult to catch up to the direct effects of newly arising issues. The survey also faces potential declines in response rates and erroneous responses. Therefore, it is necessary to find a way to complement it. For this purpose, we construct and assess an index designed to measure consumer economic sentiment index using sentiment analysis. Unlike the survey-based measures, our index relies on textual analysis to extract sentiment from economic and financial news articles. In particular, text data such as news articles and SNS are timely and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. There exist two main approaches to the automatic extraction of sentiment from a text, we apply the lexicon-based approach, using sentiment lexicon dictionaries of words annotated with the semantic orientations. In creating the sentiment lexicon dictionaries, we enter the semantic orientation of individual words manually, though we do not attempt a full linguistic analysis (one that involves analysis of word senses or argument structure); this is the limitation of our research and further work in that direction remains possible. In this study, we generate a time series index of economic sentiment in the news. The construction of the index consists of three broad steps: (1) Collecting a large corpus of economic news articles on the web, (2) Applying lexicon-based methods for sentiment analysis of each article to score the article in terms of sentiment orientation (positive, negative and neutral), and (3) Constructing an economic sentiment index of consumers by aggregating monthly time series for each sentiment word. In line with existing scholarly assessments of the relationship between the consumer confidence index and macroeconomic indicators, any new index should be assessed for its usefulness. We examine the new index's usefulness by comparing other economic indicators to the CSI. To check the usefulness of the newly index based on sentiment analysis, trend and cross - correlation analysis are carried out to analyze the relations and lagged structure. Finally, we analyze the forecasting power using the one step ahead of out of sample prediction. As a result, the news sentiment index correlates strongly with related contemporaneous key indicators in almost all experiments. We also find that news sentiment shocks predict future economic activity in most cases. In almost all experiments, the news sentiment index strongly correlates with related contemporaneous key indicators. Furthermore, in most cases, news sentiment shocks predict future economic activity; in head-to-head comparisons, the news sentiment measures outperform survey-based sentiment index as CSI. Policy makers want to understand consumer or public opinions about existing or proposed policies. Such opinions enable relevant government decision-makers to respond quickly to monitor various web media, SNS, or news articles. Textual data, such as news articles and social networks (Twitter, Facebook and blogs) are generated at high-speeds and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. Although research using unstructured data in economic analysis is in its early stages, but the utilization of data is expected to greatly increase once its usefulness is confirmed.

Open Skies Policy : A Study on the Alliance Performance and International Competition of FFP (항공자유화정책상 상용고객우대제도의 제휴성과와 국제경쟁에 관한 연구)

  • Suh, Myung-Sun;Cho, Ju-Eun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.2
    • /
    • pp.139-162
    • /
    • 2010
  • In terms of the international air transport, the open skies policy implies freedom in the sky or opening the sky. In the normative respect, the open skies policy is a kind of open-door policy which gives various forms of traffic right to other countries, but on the other hand it is a policy of free competition in the international air transport. Since the Airline Deregulation Act of 1978, the United States has signed an open skies agreement with many countries, starting with the Netherlands, so that competitive large airlines can compete in the international air transport market where there exist a lot of business opportunities. South Korea now has an open skies agreement with more than 20 countries. The frequent flyer program (FFP) is part of a broad-based marketing alliance which has been used as an airfare strategy since the U.S. government's airline deregulation. The membership-based program is an incentive plan that provides mileage points to customers for using airline services and rewards customer loyalty in tangible forms based on their accumulated points. In its early stages, the frequent flyer program was focused on marketing efforts to attract customers, but now in the environment of intense competition among airlines, the program is used as an important strategic marketing tool for enhancing business performance. Therefore, airline companies agree that they need to identify customer needs in order to secure loyal customers more effectively. The outcomes from an airline's frequent flyer program can have a variety of effects on international competition. First, the airline can obtain a more dominant position in the air flight market by expanding its air route networks. Second, the availability of flight products for customers can be improved with an increase in flight frequency. Third, the airline can preferentially expand into new markets and thus gain advantages over its competitors. However, there are few empirical studies on the airline frequent flyer program. Accordingly, this study aims to explore the effects of the program on international competition, after reviewing the types of strategic alliance between airlines. Making strategic airline alliances is a worldwide trend resulting from the open skies policy. South Korea also needs to be making open skies agreements more realistic to promote the growth and competition of domestic airlines. The present study is about the performance of the airline frequent flyer program and international competition under the open skies policy. With a sample of five global alliance groups (Star, Oneworld, Wings, Qualiflyer and Skyteam), the study was attempted as an empirical study of the effects that the resource structures and levels of information technology held by airlines in each group have on the type of alliance, and one-way analysis of variance and regression analysis were used to test hypotheses. The findings of this study suggest that both large airline companies and small/medium-size airlines in an alliance group with global networks and organizations are able to achieve high performance and secure international competitiveness. Airline passengers earn mileage points by using non-flight services through an alliance network with hotels, car-rental services, duty-free shops, travel agents and more and show high interests in and preferences for related service benefits. Therefore, Korean airline companies should develop more aggressive marketing programs based on multilateral alliances with other services including hotels, as well as with other airlines.

  • PDF

An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining (사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구)

  • Lee, Hyung Il;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.47-73
    • /
    • 2020
  • KTX rolling stocks are a system consisting of several machines, electrical devices, and components. The maintenance of the rolling stocks requires considerable expertise and experience of maintenance workers. In the event of a rolling stock failure, the knowledge and experience of the maintainer will result in a difference in the quality of the time and work to solve the problem. So, the resulting availability of the vehicle will vary. Although problem solving is generally based on fault manuals, experienced and skilled professionals can quickly diagnose and take actions by applying personal know-how. Since this knowledge exists in a tacit form, it is difficult to pass it on completely to a successor, and there have been studies that have developed a case-based rolling stock expert system to turn it into a data-driven one. Nonetheless, research on the most commonly used KTX rolling stock on the main-line or the development of a system that extracts text meanings and searches for similar cases is still lacking. Therefore, this study proposes an intelligence supporting system that provides an action guide for emerging failures by using the know-how of these rolling stocks maintenance experts as an example of problem solving. For this purpose, the case base was constructed by collecting the rolling stocks failure data generated from 2015 to 2017, and the integrated dictionary was constructed separately through the case base to include the essential terminology and failure codes in consideration of the specialty of the railway rolling stock sector. Based on a deployed case base, a new failure was retrieved from past cases and the top three most similar failure cases were extracted to propose the actual actions of these cases as a diagnostic guide. In this study, various dimensionality reduction measures were applied to calculate similarity by taking into account the meaningful relationship of failure details in order to compensate for the limitations of the method of searching cases by keyword matching in rolling stock failure expert system studies using case-based reasoning in the precedent case-based expert system studies, and their usefulness was verified through experiments. Among the various dimensionality reduction techniques, similar cases were retrieved by applying three algorithms: Non-negative Matrix Factorization(NMF), Latent Semantic Analysis(LSA), and Doc2Vec to extract the characteristics of the failure and measure the cosine distance between the vectors. The precision, recall, and F-measure methods were used to assess the performance of the proposed actions. To compare the performance of dimensionality reduction techniques, the analysis of variance confirmed that the performance differences of the five algorithms were statistically significant, with a comparison between the algorithm that randomly extracts failure cases with identical failure codes and the algorithm that applies cosine similarity directly based on words. In addition, optimal techniques were derived for practical application by verifying differences in performance depending on the number of dimensions for dimensionality reduction. The analysis showed that the performance of the cosine similarity was higher than that of the dimension using Non-negative Matrix Factorization(NMF) and Latent Semantic Analysis(LSA) and the performance of algorithm using Doc2Vec was the highest. Furthermore, in terms of dimensionality reduction techniques, the larger the number of dimensions at the appropriate level, the better the performance was found. Through this study, we confirmed the usefulness of effective methods of extracting characteristics of data and converting unstructured data when applying case-based reasoning based on which most of the attributes are texted in the special field of KTX rolling stock. Text mining is a trend where studies are being conducted for use in many areas, but studies using such text data are still lacking in an environment where there are a number of specialized terms and limited access to data, such as the one we want to use in this study. In this regard, it is significant that the study first presented an intelligent diagnostic system that suggested action by searching for a case by applying text mining techniques to extract the characteristics of the failure to complement keyword-based case searches. It is expected that this will provide implications as basic study for developing diagnostic systems that can be used immediately on the site.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

An Exploratory study on the demand for training programs to improve Real Estate Agents job performance -Focused on Cheonan, Chungnam- (부동산중개인의 직무능력 향상을 위한 교육프로그램 욕구에 관한 탐색적 연구 -충청남도 천안지역을 중심으로-)

  • Lee, Jae-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3856-3868
    • /
    • 2011
  • Until recently, research trend in real estate has been focused on real estate market and the market analysis. But the studies on real estate training program development for real estate agents to improve their job performance are relatively short in numbers. Thus, this study shows empirical analysis of the needs for the training programs for real estate agents in Cheonan to improve their job performance. The results are as follows. First, in the survey of asking what educational contents they need in order to improve real estate agents' job performance, most of the respondents show their needs for the analysis of house's value, legal knowledge, real estate management, accounting, real estate marketing, and understanding of the real estate policy. This is because they are well aware that the best way of responding to the changing clients' needs comes from training programs. Secondly, asked about real estate marketing strategies, most of respondents showed their awareness of new strategies to meet the needs of clients. This is because new forms of marketing strategies including internet ads are needed in the field as the paradigm including Information Technology changes. Thirdly, asked about the need for real estate-related training programs, 92% of the respondents answered they need real estate education programs run by the continuing education centers of the universities. In addition, the survey showed their needs for retraining programs that utilize the resources in the local universities. Other than this, to have effective and efficient training programs, they demanded running a training system by utilizing the human resources of the universities under the name of the department of 'Real Estate Contract' for real estate agents' job performance. Fourthly, the survey revealed real estate management(44.2%) and real estate marketing(42.3%) is the most chosen contents they want to take in the regular course for improving real estate agents' job performance. This shows their will to understand clients' needs through the mind of real estate management and real estate marketing. The survey showed they prefer the training programs as an irregular course to those in the regular one. Despite the above results, this study chose subjects only in Cheanan and thus it needs to research more diverse areas. The needs of programs to improve real estate agents job performance should be analyzed empirically targeting the real estate agents not just in Cheonan but also cities like Pyeongchon, Ilsan and Bundang in which real estate business is booming, as well as undergraduate and graduate students whose major is real estate studies. These studies will be able to provide information to help develop the customized training programs by evaluating elements that real estate agents need in order to meet clients satisfaction and improve their job performance. Many variables of the program development learned through these studies can be incorporated in the curriculum of the real estate studies and used very practically as information for the development of the real estate studies in this fast changing era.

The Effect of Perceived Shopping Value Dimensions on Attitude toward Store, Emotional Response to Store Shopping, and Store Loyalty (지각된 쇼핑가치차원이 점포태도, 쇼핑과정에서의 정서적 경험, 점포충성도에 미치는 영향에 관한 연구)

  • Ahn Kwang Ho;Lee Ha Neol
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.137-164
    • /
    • 2011
  • In the past, retailers secured customer loyalty by offering convenient locations, unique assortments of goods, better services than competitors, and good credit policy. All this has changed. Goods assortments among stores have become more alike as national-brand manufacturers place their goods in more and more retail stores. Service differentiation also has eroded. Many department stores have trimmed services, and many discount stores have increased theirs. Customers have become smarter shoppers. They don't pay more for identical brands, especially when service differences have diminished. In the face of increased competition from discount storess and specialty stores, department stores are waging a comeback war. Growth of intertype competition, competition between store-based and non-store-based retailing and growing investment in technology are changing the way consumers shop and retailers sell. Different types of stores-discount stores, catalog showrooms, department stores-all compete for the same consumers by carrying the same type of merchandise. The biggest winners are retailers that have helped shoppers to be economically cautious, simplified their increasingly busy and complicated lives, and provided an emotional connection. The growth of e-retailers has forced traditional brick-and-mortar retailers to respond. Basically brick-and-mortar retailers utilize their natural advantages, such as products that shoppers can actually see, touch, and test, real-life customer service, and no delivery lag time for small-sized purchases. They also provide a shopping experience as a strong differentiator. They are adopting practices as calling each shopper a "guest". The store atmosphere should match the basic motivations of the shopper. If target consumers are more likely to be in a task-oriented and functional mindset, then a simpler, more restrained in-store environment may be better. Consistent with this reasoning, some retailers of experiential products are creating in-store entertainment to attract customers who want fun and excitement. The retail experience must deliver value to turn a one-time visitor into a loyal customer. Retailers need a tool that measures the full range of components that define experience-based value. This study uses an experiential value scale(EVS) developed by Mathwick, Malhotra and Rigdon(2001) which reflects the benefits derived from perceptions of playfulness, aesthetics, customer "return on investment" and service excellence. EVS is useful to predict differences in shopping preferences and patronage behavior of customers. EVS consists of items measuring efficiency, economic value, visual appeal, entertainment value, service excellence, escapism, and intrinsic enjoyment, which are subscales of experiencial value. Efficiency, economic value, service excellence are linked to the utilitarian shopping value. And visual appeal, entertainment value, escapism and intrinsic enjoyment are linked to hedonic shopping value. It has been found that consumers value hedonic experiences activated from escapism and attractiveness of shopping environment as much as the product quality, price, and the convenient location. As a result, many department stores, discount stores, and other retailers are introducing differential marketing strategy based on emotional/hedonic values. Many researches suggest that consumers go shopping not only for buying products but also for various shopping experiences. In other words, they seek the practical, rational value as well as social, recreational values in the shopping process(Babin et al, 1994; Bloch et al, 1994). Retailers may enhance buyer's loyalty to store by providing excellent emotional/hedonic value such as the excitement from shopping, not just the practical value of buying good products efficiently. We investigate the effect of perceived shopping values on the emotional experience and store loyalty based on the EVS(Experiential Value Scales) developed by Holbrook(1994), Mathwick, Malhotra and Rigdon(2001). This study assumes that the relative effect of shopping value dimensions on the responses of shoppers will differ according to types of stores and analyzes the moderating effect of store type(department store VS. discount store) on the causal relationship between shopping value dimensions and store loyalty. Emprical results show that utilitarian values of shopping experience and hedonic value of shipping experience give the positive effect on the emotional response of consumers and store loyalty. We also found the moderating effect of store types. The effect of utilitarian shopping values on the attitude toward discount store is higher than the effect of utilitarian shopping values on the attitude toword department store. And the effect of hedonic shopping value on the emotional response to discount store is higher than on the emotional response to department store. The empirical results reflect on the recent trend that discount stores try to fulfill the hedonic needs of consumers as well as utilitarian needs(i.e, low price) that discount stores traditionally have focused on

  • PDF

A Study for Strategy of On-line Shopping Mall: Based on Customer Purchasing and Re-purchasing Pattern (시스템 다이내믹스 기법을 활용한 온라인 쇼핑몰의 전략에 관한 연구 : 소비자의 구매 및 재구매 행동을 중심으로)

  • Lee, Sang-Gun;Min, Suk-Ki;Kang, Min-Cheol
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.91-121
    • /
    • 2008
  • Electronic commerce, commonly known as e-commerce or eCommerce, has become a major business trend in these days. The amount of trade conducted electronically has grown extraordinarily by developing the Internet technology. Most electronic commerce has being conducted between businesses to customers; therefore, the researches with respect to e-commerce are to find customer's needs, behaviors through statistical methods. However, the statistical researches, mostly based on a questionnaire, are the static researches, They can tell us the dynamic relationships between initial purchasing and repurchasing. Therefore, this study proposes dynamic research model for analyzing the cause of initial purchasing and repurchasing. This paper is based on the System-Dynamic theory, using the powerful simulation model with some restriction, The restrictions are based on the theory TAM(Technology Acceptance Model), PAM, and TPB(Theory of Planned Behavior). This article investigates not only the customer's purchasing and repurchasing behavior by passing of time but also the interactive effects to one another. This research model has six scenarios and three steps for analyzing customer behaviors. The first step is the research of purchasing situations. The second step is the research of repurchasing situations. Finally, the third step is to study the relationship between initial purchasing and repurchasing. The purpose of six scenarios is to find the customer's purchasing patterns according to the environmental changes. We set six variables in these scenarios by (1) changing the number of products; (2) changing the number of contents in on-line shopping malls; (3) having multimedia files or not in the shopping mall web sites; (4) grading on-line communities; (5) changing the qualities of products; (6) changing the customer's degree of confidence on products. First three variables are applied to study customer's purchasing behavior, and the other variables are applied to repurchasing behavior study. Through the simulation study, this paper presents some inter-relational result about customer purchasing behaviors, For example, Active community actions are not the increasing factor of purchasing but the increasing factor of word of mouth effect, Additionally. The higher products' quality, the more word of mouth effects increase. The number of products and contents on the web sites have same influence on people's buying behaviors. All simulation methods in this paper is not only display the result of each scenario but also find how to affect each other. Hence, electronic commerce firm can make more realistic marketing strategy about consumer behavior through this dynamic simulation research. Moreover, dynamic analysis method can predict the results which help the decision of marketing strategy by using the time-line graph. Consequently, this dynamic simulation analysis could be a useful research model to make firm's competitive advantage. However, this simulation model needs more further study. With respect to reality, this simulation model has some limitations. There are some missing factors which affect customer's buying behaviors in this model. The first missing factor is the customer's degree of recognition of brands. The second factor is the degree of customer satisfaction. The third factor is the power of word of mouth in the specific region. Generally, word of mouth affects significantly on a region's culture, even people's buying behaviors. The last missing factor is the user interface environment in the internet or other on-line shopping tools. In order to get more realistic result, these factors might be essential matters to make better research in the future studies.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.