• Title/Summary/Keyword: Business Process Performance

Search Result 1,308, Processing Time 0.037 seconds

A Study on the Social Venture Startup Phenomenon Using the Grounded Theory Approach (근거이론 접근법을 이용한 소셜벤처 창업 현상에 관한 고찰)

  • Seol, Byung Moon;Kim, Young Lag
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.67-83
    • /
    • 2023
  • The social venture start-up phenomenon is found from the perspectives of social enterprise and for-profit enterprise. This study aims to fundamentally explore the start-up phenomenon of social ventures from these two perspectives. Considering the lack of prior research that researched both social and commercial perspectives at the same time, this paper analyzed using grounded theory approach of Strauss & Corbin(1998), an inductive research method that analyzes based on prior research and interview data. In order to collect data for this study, eight corporate representatives currently operating social ventures were interviewed and data and phenomena were analyzed. This progressed to a theoretical saturation where no additional information was derived. The analysis results of this study using the grounded theory approach are as follows. As a result of open coding and axial coding, 147 concepts and 70 subcategories were derived, and 18 categories were derived through the final abstraction process. In the selective coding, 'expansion of social venture entry in the social domain' and 'expansion of social function of for-profit companies' were selected as key categories, and a story line was formed around this. In this study, we saw that it is necessary to conduct academic research and analysis on the competitive factors required for companies that pursue the values of two conflicting relationships, such as social ventures, to survive with competitiveness. In practice, concepts such as collaboration with for-profit companies, value combination, entrepreneurship competency and performance improvement, social value execution competency reinforcement, communication strategy, for-profit enterprise value investment, and entrepreneur management competency were derived. This study explains the social venture phenomenon for social enterprises, commercial enterprises, and entrepreneurs who want to enter the social venture field. It is expected to provide the implications necessary for successful social venture startups.

  • PDF

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

The Factors Affecting Attitudes Toward HSDPA Service and Intention to Use: A Cross-Cultural Comparison between Asia and Europe (대영향(对影响)HSDPA복무적태도화사용의도적인소적연구(服务的态度和使用意图的因素的研究): 재아주화구주지간적(在亚洲和欧洲之间的)-개과문화비교(个跨文化比较))

  • Jung, Hae-Sung;Shin, Jong-Kuk;Park, Min-Sook;Jung, Hong-Seob;Hooley, Graham;Lee, Nick;Kwak, Hyok-Jin;Kim, Sung-Hyun
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.11-23
    • /
    • 2009
  • HSDPA (High-Speed Downlink Packet Access) is a 3.5-generation asynchronous mobile communications service based on the third generation of W-CDMA. In Korea, it is mainly provided in through videophone service. Because of the diffusion of more powerful and diversified services, along with steep advances in mobile communications technology, consumers demand a wide range of choices. However, because of the variety of technologies, which tend to overflow the market regardless of consumer preferences, consumers feel increasingly confused. Therefore, we should not adopt strategies that focus only on developing new technology on the assumption that new technologies are next-generation projects. Instead, we should understand the process by which consumers accept new forms of technology and devise schemes to lower market entry barriers through strategies that enable developers to understand and provide what consumers really want. In the Technology Acceptance Model (TAM), perceived usefulness and perceived ease of use are suggested as the most important factors affecting the attitudes of people adopting new technologies (Davis, 1989; Taylor and Todd, 1995; Venkatesh, 2000; Lee et al., 2004). Perceived usefulness is the degree to which a person believes that a particular technology will enhance his or her job performance. Perceived ease of use is the degree of subjective belief that using a particular technology will require little physical and mental effort (Davis, 1989; Morris and Dillon, 1997; Venkatesh, 2000). Perceived pleasure and perceived usefulness have been shown to clearly affect attitudes toward accepting technology (Davis et al., 1992). For example, pleasure in online shopping has been shown to positively impact consumers' attitudes toward online sellers (Eighmey and McCord, 1998; Mathwick, 2002; Jarvenpaa and Todd, 1997). The perceived risk of customers is a subjective risk, which is distinguished from an objective probabilistic risk. Perceived risk includes a psychological risk that consumers perceive when they choose brands, stores, and methods of purchase to obtain a particular item. The ability of an enterprise to revolutionize products depends on the effective acquisition of knowledge about new products (Bierly and Chakrabarti, 1996; Rothwell and Dodgson, 1991). Knowledge acquisition is the ability of a company to perceive the value of novelty and technology of the outside (Cohen and Levinthal, 1990), to evaluate the outside technology that has newly appeared (Arora and Gambaradella, 1994), and to predict the future evolution of technology accurately (Cohen and Levinthal, 1990). Consumer innovativeness is the degree to which an individual adopts innovation earlier than others in the social system (Lee, Ahn, and Ha, 2001; Gatignon and Robertson, 1985). That is, it shows how fast and how easily consumers adopt new ideas. Innovativeness is regarded as important because it has a significant effect on whether consumers adopt new products and on how fast they accept new products (Midgley and Dowling, 1978; Foxall, 1988; Hirschman, 1980). We conducted cross-national comparative research using the TAM model, which empirically verified the relationship between the factors that affect attitudes - perceived usefulness, ease of use, perceived pleasure, perceived risk, innovativeness, and perceived level of knowledge management - and attitudes toward HSDPA service. We also verified the relationship between attitudes and usage intention for the purpose of developing more effective methods of management for HSDPA service providers. For this research, 346 questionnaires were distributed among 350 students in the Republic of Korea. Because 26 of the returned questionnaires were inconsistent or had missing data, 320 questionnaires were used in the hypothesis tests. In UK, 192 of the total 200 questionnaires were retrieved, and two incomplete ones were discarded, bringing the total to 190 questionnaires used for statistical analysis. The results of the overall model analysis are as follows: Republic of Korea x2=333.27(p=0.0), NFI=0.88, NNFI=0.88, CFI=0.91, IFI=0.91, RMR=0.054, GFI=0.90, AGFI=0.84, UK x2=176.57(p=0.0), NFI=0.88, NNFI=0.90, CFI=0.93, IFI=0.93, RMR=0.062, GFI=0.90, AGFI=0.84. From the results of the hypothesis tests of Korean consumers about the relationship between factors that affect intention to use HSDPA services and attitudes, we can conclude that perceived usefulness, ease of use, pleasure, a high level of knowledge management, and innovativeness promote positive attitudes toward HSDPA mobile phones. However, ease of use and perceived pleasure did not have a direct effect on intention to use HSDPA service. This may have resulted from the fact that the use of video phones is not necessary for everyday life yet. Moreover, it has been shown that attitudes toward HSDPA video phones are directly correlated with usage intention, which means that perceived usefulness, ease of use, pleasure, a high level of knowledge management, and innovativeness. These relationships form the basis of the intention to buy, contributing to a situation in which consumers decide to choose carefully. A summary of the results of the hypothesis tests of European consumers revealed that perceived usefulness, pleasure, risk, and the level of knowledge management are factors that affect the formation of attitudes, while ease of use and innovativeness do not have an effect on attitudes. In particular, with regard to the effect value, perceived usefulness has the largest effect on attitudes, followed by pleasure and knowledge management. On the contrary, perceived risk has a smaller effect on attitudes. In the Asian model, ease of use and perceived pleasure were found not to have a direct effect on intention to use. However, because attitudes generally affect the intention to use, perceived usefulness, pleasure, risk, and knowledge management may be considered key factors in attitude development from which usage intention arises. In conclusion, perceived usefulness, pleasure, and the level of knowledge management have an effect on attitude formation in both Asian and European consumers, and such attitudes shape these consumers' intention to use. Furthermore, the hypotheses that ease of use and perceived pleasure affect usage intention are rejected. However, ease of use, perceived risk, and innovativeness showed different results. Perceived risk had no effect on attitude formation among Asians, while ease of use and innovativeness had no effect on attitudes among Europeans.

  • PDF

The Effects on CRM Performance and Relationship Quality of Successful Elements in the Establishment of Customer Relationship Management: Focused on Marketing Approach (CRM구축과정에서 마케팅요인이 관계품질과 CRM성과에 미치는 영향)

  • Jang, Hyeong-Yu
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.119-155
    • /
    • 2008
  • Customer Relationship Management(CRM) has been a sustainable competitive edge of many companies. CRM analyzes customer data for designing and executing targeted marketing analysing customer behavior in order to make decisions relating to products and services including management information system. It is critical for companies to get and maintain profitable customers. How to manage relationships with customers effectively has become an important issue for both academicians and practitioners in recent years. However, the existing academic literature and the practical applications of customer relationship management(CRM) strategies have been focused on the technical process and organizational structure about the implementation of CRM. These limited focus on CRM lead to the result of numerous reports of failed implementations of various types of CRM projects. Many of these failures are also related to the absence of marketing approach. Identifying successful factors and outcomes focused on marketing concept before introducing a CRM project are a pre-implementation requirements. Many researchers have attempted to find the factors that contribute to the success of CRM. However, these research have some limitations in terms of marketing approach without explaining how the marketing based factors contribute to the CRM success. An understanding of how to manage relationship with crucial customers effectively based marketing approach has become an important topic for both academicians and practitioners. However, the existing papers did not provide a clear antecedent and outcomes factors focused on marketing approach. This paper attempt to validate whether or not such various marketing factors would impact on relational quality and CRM performance in terms of marketing oriented perceptivity. More specifically, marketing oriented factors involving market orientation, customer orientation, customer information orientation, and core customer orientation can influence relationship quality(satisfaction and trust) and CRM outcome(customer retention and customer share). Another major goals of this research are to identify the effect of relationship quality on CRM outcomes consisted of customer retention and share to show the relationship strength between two factors. Based on meta analysis for conventional studies, I can construct the following research model. An empirical study was undertaken to test the hypotheses with data from various companies. Multiple regression analysis and t-test were employed to test the hypotheses. The reliability and validity of our measurements were tested by using Cronbach's alpha coefficient and principal factor analysis respectively, and seven hypotheses were tested through performing correlation test and multiple regression analysis. The first key outcome is a theoretically and empirically sound CRM factors(marketing orientation, customer orientation, customer information orientation, and core customer orientation.) in the perceptive of marketing. The intensification of ${\beta}$coefficient among antecedents factors in terms of marketing was not same. In particular, The effects on customer trust of marketing based CRM antecedents were significantly confirmed excluding core customer orientation. It was notable that the direct effects of core customer orientation on customer trust were not exist. This means that customer trust which is firmly formed by long term tasks will not be directly linked to the core customer orientation. the enduring management concerned with this interactions is probably more important for the successful implementation of CRM. The second key result is that the implementation and operation of successful CRM process in terms of marketing approach have a strong positive association with both relationship quality(customer trust/customer satisfaction) and CRM performance(customer retention and customer possession). The final key fact that relationship quality has a strong positive effect on customer retention and customer share confirms that improvements in customer satisfaction and trust improve accessibility to customers, provide more consistent service and ensure value-for-money within the front office which result in growth of customer retention and customer share. Particularly, customer satisfaction and trust which is main components of relationship quality are found to be positively related to the customer retention and customer share. Interactive managements of these main variables play key roles in connecting the successful antecedent of CRM with final outcome involving customer retention and share. Based on research results, This paper suggest managerial implications concerned with constructions and executions of CRM focusing on the marketing perceptivity. I can conclude in general the CRM can be achieved by the recognition of antecedents and outcomes based on marketing concept. The implementation of marketing concept oriented CRM will be connected with finding out about customers' purchasing habits, opinions and preferences profiling individuals and groups to market more effectively and increase sales changing the way you operate to improve customer service and marketing. Benefiting from CRM is not just a question of investing the right software, but adapt CRM users to the concept of marketing including marketing orientation, customer orientation, and customer information orientation. No one deny that CRM is a process or methodology used to develop stronger relationships being composed of many technological components, but thinking about CRM in primarily technological terms is a big mistake. We can infer from this paper that the more useful way to think and implement about CRM is as a process that will help bring together lots of pieces of marketing concept about customers, marketing effectiveness, and market trends. Finally, a real situation we conducted our research may enable academics and practitioners to understand the antecedents and outcomes in the perceptive of marketing more clearly.

  • PDF

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

Deep Learning-based Professional Image Interpretation Using Expertise Transplant (전문성 이식을 통한 딥러닝 기반 전문 이미지 해석 방법론)

  • Kim, Taejin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.79-104
    • /
    • 2020
  • Recently, as deep learning has attracted attention, the use of deep learning is being considered as a method for solving problems in various fields. In particular, deep learning is known to have excellent performance when applied to applying unstructured data such as text, sound and images, and many studies have proven its effectiveness. Owing to the remarkable development of text and image deep learning technology, interests in image captioning technology and its application is rapidly increasing. Image captioning is a technique that automatically generates relevant captions for a given image by handling both image comprehension and text generation simultaneously. In spite of the high entry barrier of image captioning that analysts should be able to process both image and text data, image captioning has established itself as one of the key fields in the A.I. research owing to its various applicability. In addition, many researches have been conducted to improve the performance of image captioning in various aspects. Recent researches attempt to create advanced captions that can not only describe an image accurately, but also convey the information contained in the image more sophisticatedly. Despite many recent efforts to improve the performance of image captioning, it is difficult to find any researches to interpret images from the perspective of domain experts in each field not from the perspective of the general public. Even for the same image, the part of interests may differ according to the professional field of the person who has encountered the image. Moreover, the way of interpreting and expressing the image also differs according to the level of expertise. The public tends to recognize the image from a holistic and general perspective, that is, from the perspective of identifying the image's constituent objects and their relationships. On the contrary, the domain experts tend to recognize the image by focusing on some specific elements necessary to interpret the given image based on their expertise. It implies that meaningful parts of an image are mutually different depending on viewers' perspective even for the same image. So, image captioning needs to implement this phenomenon. Therefore, in this study, we propose a method to generate captions specialized in each domain for the image by utilizing the expertise of experts in the corresponding domain. Specifically, after performing pre-training on a large amount of general data, the expertise in the field is transplanted through transfer-learning with a small amount of expertise data. However, simple adaption of transfer learning using expertise data may invoke another type of problems. Simultaneous learning with captions of various characteristics may invoke so-called 'inter-observation interference' problem, which make it difficult to perform pure learning of each characteristic point of view. For learning with vast amount of data, most of this interference is self-purified and has little impact on learning results. On the contrary, in the case of fine-tuning where learning is performed on a small amount of data, the impact of such interference on learning can be relatively large. To solve this problem, therefore, we propose a novel 'Character-Independent Transfer-learning' that performs transfer learning independently for each character. In order to confirm the feasibility of the proposed methodology, we performed experiments utilizing the results of pre-training on MSCOCO dataset which is comprised of 120,000 images and about 600,000 general captions. Additionally, according to the advice of an art therapist, about 300 pairs of 'image / expertise captions' were created, and the data was used for the experiments of expertise transplantation. As a result of the experiment, it was confirmed that the caption generated according to the proposed methodology generates captions from the perspective of implanted expertise whereas the caption generated through learning on general data contains a number of contents irrelevant to expertise interpretation. In this paper, we propose a novel approach of specialized image interpretation. To achieve this goal, we present a method to use transfer learning and generate captions specialized in the specific domain. In the future, by applying the proposed methodology to expertise transplant in various fields, we expected that many researches will be actively conducted to solve the problem of lack of expertise data and to improve performance of image captioning.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.