• Title/Summary/Keyword: Business Performance Model

Search Result 2,174, Processing Time 0.028 seconds

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

A Study on the Buyer's Decision Making Models for Introducing Intelligent Online Handmade Services (지능형 온라인 핸드메이드 서비스 도입을 위한 구매자 의사결정모형에 관한 연구)

  • Park, Jong-Won;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.119-138
    • /
    • 2016
  • Since the Industrial Revolution, which made the mass production and mass distribution of standardized goods possible, machine-made (manufactured) products have accounted for the majority of the market. However, in recent years, the phenomenon of purchasing even more expensive handmade products has become a noticeable trend as consumers have started to acknowledge the value of handmade products, such as the craftsman's commitment, belief in their quality and scarcity, and the sense of self-esteem from having them,. Consumer interest in these handmade products has shown explosive growth and has been coupled with the recent development of three-dimensional (3D) printing technologies. Etsy.com is the world's largest online handmade platform. It is no different from any other online platform; it provides an online market where buyers and sellers virtually meet to share information and transact business. However, Etsy.com is different in that shops within this platform only deal with handmade products in a variety of categories, ranging from jewelry to toys. Since its establishment in 2005, despite being limited to handmade products, Etsy.com has enjoyed rapid growth in membership, transaction volume, and revenue. Most recently in April 2015, it raised funds through an initial public offering (IPO) of more than 1.8 billion USD, which demonstrates the huge potential of online handmade platforms. After the success of Etsy.com, various types of online handmade platforms such as Handmade at Amazon, ArtFire, DaWanda, and Craft is ART have emerged and are now competing with each other, at the same time, which has increased the size of the market. According to Deloitte's 2015 holiday survey on which types of gifts the respondents plan to buy during the holiday season, about 16% of U.S. consumers chose "homemade or craft items (e.g., Etsy purchase)," which was the same rate as those for the computer game and shoes categories. This indicates that consumer interests in online handmade platforms will continue to rise in the future. However, this high interest in the market for handmade products and their platforms has not yet led to academic research. Most extant studies have only focused on machine-made products and intelligent services for them. This indicates a lack of studies on handmade products and their intelligent services on virtual platforms. Therefore, this study used signaling theory and prior research on the effects of sellers' characteristics on their performance (e.g., total sales and price premiums) in the buyer-seller relationship to identify the key influencing e-Image factors (e.g., reputation, size, information sharing, and length of relationship). Then, their impacts on the performance of shops within the online handmade platform were empirically examined; the dataset was collected from Etsy.com through the application of web harvesting technology. The results from the structural equation modeling revealed that the reputation, size, and information sharing have significant effects on the total sales, while the reputation and length of relationship influence price premiums. This study extended the online platform research into online handmade platform research by identifying key influencing e-Image factors on within-platform shop's total sales and price premiums based on signaling theory and then performed a statistical investigation. These findings are expected to be a stepping stone for future studies on intelligent online handmade services as well as handmade products themselves. Furthermore, the findings of the study provide online handmade platform operators with practical guidelines on how to implement intelligent online handmade services. They should also help shop managers build their marketing strategies in a more specific and effective manner by suggesting key influencing e-Image factors. The results of this study should contribute to the vitalization of intelligent online handmade services by providing clues on how to maximize within-platform shops' total sales and price premiums.

Relation of Social Security Network, Community Unity and Local Government Trust (지역사회 사회안전망구축과 지역사회결속 및 지방자치단체 신뢰의 관계)

  • Kim, Yeong-Nam;Kim, Chan-Sun
    • Korean Security Journal
    • /
    • no.42
    • /
    • pp.7-36
    • /
    • 2015
  • This study aims at analyzing difference of social Security network, Community unity and local government trust according to socio-demographical features, exploring the relation of social Security network, Community unity and local government trust according to socio-demographical features, presenting results between each variable as a model and verifying the property of mutual ones. This study sampled general citizens in Gwangju for about 15 days Aug. 15 through Aug. 30, 2014, distributed total 450 copies using cluster random sampling, gathered 438 persons, 412 persons of whom were used for analysis. This study verified the validity and credibility of the questionnaire through an experts' meeting, preliminary test, factor analysis and credibility analysis. The credibility of questionnaire was ${\alpha}=.809{\sim}{\alpha}=.890$. The inout data were analyzed by study purpose using SPSSWIN 18.0, as statistical techniques, factor analysis, credibility analysis, correlation analysis, independent sample t verification, ANOVA, multi-regression analysis, path analysis etc. were used. the findings obtained through the above study methods are as follows. First, building a social Security network has an effect on Community institution. That is, the more activated a, the higher awareness on institution. the more activated street CCTV facilities, anti-crime design, local government Security education, the higher the stability. Second, building a social Security network has an effect on trust of local government. That is, the activated local autonomous anti-crime activity, anti-crime design. local government's Security education, police public oder service, the more increased trust of policy, service management, busines performance. Third, Community unity has an effect on trust of local government. That is, the better Community institution is achieved, the higher trust of policy. Also the stabler Community institution, the higher trust of business performance. Fourth, building a social Security network has a direct or indirect effect on Community unity and local government trust. That is, social Security network has a direct effect on trust of local government, but it has a higher effect through Community unity of parameter. Such results showed that Community unity in Gwangju Region is an important factor, which means it is an important variable mediating building a social Security network and trust of local government. To win trust of local residents, we need to prepare for various cultural events and active communication space and build a social Security network for uniting them.

  • PDF

Position and function of dance education in arts and cultural education (문화예술교육에서 무용교육의 위치와 기능)

  • Hwang, Jeong-ok
    • (The) Research of the performance art and culture
    • /
    • no.36
    • /
    • pp.531-551
    • /
    • 2018
  • The educational trait that the arts and cultural education and dance strive for at a time when the ethical tasks of life is the experience for insight of life. The awareness of time entrusted with the intensity [depth] of artistic and aesthetic experience is to contain its implication with policy and system. In the policy territory, broad perception and strategy are combined and practiced to produce new implication. Therefore, on the basis of characteristics and spectrum persuaded at a time when the arts and cultural education and dance education are broadly expanded, the result of this study after taking a look at the role of dance education within the arts and cultural education is shown as follows. The value striving for by the culture and arts education and dance education is to structure the life form with the artistic experience through the art as the ultimate life description. This is attributable to the fact that the artistic trait structured with self-understanding and self-expression contains the directivity of life that is recorded and depicted in the process of life. The dance education in the culture and arts education has the trait to view the world with the dance structure as the comprehensive study as in other textbook or art genre under the awareness of time and education system category within the school system and it has diverse social issues combined as related to the frame of social growth and advancement outside of school. When taking a look at the practical characteristics (method) of dance based on the arts and cultural education business, it facilitates the practice strategy through dance, in dance, about dance, between dance with the artist for art [dance]. At this time, the approachability of dance is deployed in a program based on diverse artistry for technology, expression, understanding, symbolism and others and it has the participation of enjoyment and preference. In the policy project of the culture and arts education, the dance education works as the function of education project as an alternative model on the education system and it also sometimes works as the function for social improvement and development to promote the community awareness and cultural transformation through the involvement and intervention of social issues.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

A Study on Nonverbal Communication m the Service Provider (서비스 제공자의 비언어적 커뮤니케이션에 관한 연구)

  • Kim, Yu-Kyung
    • Journal of Global Scholars of Marketing Science
    • /
    • v.15 no.3
    • /
    • pp.117-148
    • /
    • 2005
  • As this study aimed to examine which influence the nonverbal communication of service provider has upon service performance in terms of service industry, the specific objectives are as follows. First, it tried to examine into the relationship between the nonverbal communication in the service provider, and the emotional attachment. Nonverbal communication is divided into 4 kinds such as physical language, proxemics, paralanguage, and physical appearance. Second, it aimed to examine the relationship between the customer's attachment to the service provider, and the social competence and trust in the service provider. Third, it tried to examine into the relationship of service provider's social competence and trust with the customer satisfaction and with the switching costs. Additionally, it examined the moderating effect in the service type and the service usage period in terms of the model that was presented in this study. Given examining the verified results in these research hypotheses, those are as follows. First, given seeing the relationship between the nonverbal communication and the emotional attachment, it was represented that the physical language, proxemics, and physical appearance, except paralanguage, have significantly positive(+) influence upon emotional attachment. Second, it was indicated that emotional attachment has significantly positive(+) influence upon the social competence and trust in the service provider. Third, the social competence in the service provider had no positive effect(+) on customer satisfaction, and was having significantly positive(+) influence upon the customer's perceived switching barrier. Fourth, it was represented that the customer satisfaction toward the service provider have significantly positive(+) influence upon the switching barrier. Finally, as a result of having verified whether or not the moderating effect in the service type and the service usage period, it was indicated to be produced the difference depending on the service type in the relationships between the physical language and the emotional attachment, between the paralanguage and the emotional attachment, between the emotional attachment and the trust, and between the trust and the switching barrier. Depending on the service usage period, the difference was represented, respectively, in the relationships between the physical language and the emotional attachment and between the physical appearance and the emotional attachment.

  • PDF

The Gains To Bidding Firms' Stock Returns From Merger (기업합병의 성과에 영향을 주는 요인에 대한 실증적 연구)

  • Kim, Yong-Kap
    • Management & Information Systems Review
    • /
    • v.23
    • /
    • pp.41-74
    • /
    • 2007
  • In Korea, corporate merger activities were activated since 1980, and nowadays(particuarly since 1986) the changes in domestic and international economic circumstances have made corporate managers have strong interests in merger. Korea and America have different business environments and it is easily conceivable that there exists many differences in motives, methods, and effects of mergers between the two countries. According to recent studies on takeover bids in America, takeover bids have information effects, tax implications, and co-insurance effects, and the form of payment(cash versus securities), the relative size of target and bidder, the leverage effect, Tobin's q, number of bidders(single versus multiple bidder), the time period (before 1968, 1968-1980, 1981 and later), and the target firm reaction (hostile versus friendly) are important determinants of the magnitude of takeover gains and their distribution between targets and bidders at the announcement of takeover bids. This study examines the theory of takeover bids, the status quo and problems of merger in Korea, and then investigates how the announcement of merger are reflected in common stock returns of bidding firms, finally explores empirically the factors influencing abnormal returns of bidding firms' stock price. The hypotheses of this study are as follows ; Shareholders of bidding firms benefit from mergers. And common stock returns of bidding firms at the announcement of takeover bids, shows significant differences according to the condition of the ratio of target size relative to bidding firm, whether the target being a member of the conglomerate to which bidding firm belongs, whether the target being a listed company, the time period(before 1986, 1986, and later), the number of bidding firm's stock in exchange for a stock of the target, whether the merger being a horizontal and vertical merger or a conglomerate merger, and the ratios of debt to equity capital of target and bidding firm. The data analyzed in this study were drawn from public announcements of proposals to acquire a target firm by means of merger. The sample contains all bidding firms which were listed in the stock market and also engaged in successful mergers in the period 1980 through 1992 for which there are daily stock returns. A merger bid was considered successful if it resulted in a completed merger and the target firm disappeared as a separate entity. The final sample contains 113 acquiring firms. The research hypotheses examined in this study are tested by applying an event-type methodology similar to that described in Dodd and Warner. The ordinary-least-squares coefficients of the market-model regression were estimated over the period t=-135 to t=-16 relative to the date of the proposal's initial announcement, t=0. Daily abnormal common stock returns were calculated for each firm i over the interval t=-15 to t=+15. A daily average abnormal return(AR) for each day t was computed. Average cumulative abnormal returns($CART_{T_1,T_2}$) were also derived by summing the $AR_t's$ over various intervals. The expected values of $AR_t$ and $CART_{T_1,T_2}$ are zero in the absence of abnormal performance. The test statistics of $AR_t$ and $CAR_{T_1,T_2}$ are based on the average standardized abnormal return($ASAR_t$) and the average standardized cumulative abnormal return ($ASCAR_{T_1,T_2}$), respectively. Assuming that the individual abnormal returns are normal and independent across t and across securities, the statistics $Z_t$ and $Z_{T_1,T_2}$ which follow a unit-normal distribution(Dodd and Warner), are used to test the hypotheses that the average standardized abnormal returns and the average cumulative standardized abnormal returns equal zero.

  • PDF

A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies (주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법)

  • Park, Do-Myung;Choi, HyungRim;Park, Byung-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.177-190
    • /
    • 2021
  • Due to the development of the fourth industrial revolution technology, efforts are being made to improve areas that humans cannot handle by utilizing artificial intelligence techniques such as machine learning. Although on-demand production companies also want to reduce corporate risks such as delays in delivery by predicting total production time for orders, they are having difficulty predicting this because the total production time is all different for each order. The Theory of Constraints (TOC) theory was developed to find the least efficient areas to increase order throughput and reduce order total cost, but failed to provide a forecast of total production time. Order production varies from order to order due to various customer needs, so the total production time of individual orders can be measured postmortem, but it is difficult to predict in advance. The total measured production time of existing orders is also different, which has limitations that cannot be used as standard time. As a result, experienced managers rely on persimmons rather than on the use of the system, while inexperienced managers use simple management indicators (e.g., 60 days total production time for raw materials, 90 days total production time for steel plates, etc.). Too fast work instructions based on imperfections or indicators cause congestion, which leads to productivity degradation, and too late leads to increased production costs or failure to meet delivery dates due to emergency processing. Failure to meet the deadline will result in compensation for delayed compensation or adversely affect business and collection sectors. In this study, to address these problems, an entity that operates an order production system seeks to find a machine learning model that estimates the total production time of new orders. It uses orders, production, and process performance for materials used for machine learning. We compared and analyzed OLS, GLM Gamma, Extra Trees, and Random Forest algorithms as the best algorithms for estimating total production time and present the results.

The Effect of Common Features on Consumer Preference for a No-Choice Option: The Moderating Role of Regulatory Focus (재몰유선택적정황하공동특성대우고객희호적영향(在没有选择的情况下共同特性对于顾客喜好的影响): 조절초점적조절작용(调节焦点的调节作用))

  • Park, Jong-Chul;Kim, Kyung-Jin
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.89-97
    • /
    • 2010
  • This study researches the effects of common features on a no-choice option with respect to regulatory focus theory. The primary interest is in three factors and their interrelationship: common features, no-choice option, and regulatory focus. Prior studies have compiled vast body of research in these areas. First, the "common features effect" has been observed bymany noted marketing researchers. Tversky (1972) proposed the seminal theory, the EBA model: elimination by aspect. According to this theory, consumers are prone to focus only on unique features during comparison processing, thereby dismissing any common features as redundant information. Recently, however, more provocative ideas have attacked the EBA model by asserting that common features really do affect consumer judgment. Chernev (1997) first reported that adding common features mitigates the choice gap because of the increasing perception of similarity among alternatives. Later, however, Chernev (2001) published a critically developed study against his prior perspective with the proposition that common features may be a cognitive load to consumers, and thus consumers are possible that they are prone to prefer the heuristic processing to the systematic processing. This tends to bring one question to the forefront: Do "common features" affect consumer choice? If so, what are the concrete effects? This study tries to answer the question with respect to the "no-choice" option and regulatory focus. Second, some researchers hold that the no-choice option is another best alternative of consumers, who are likely to avoid having to choose in the context of knotty trade-off settings or mental conflicts. Hope for the future also may increase the no-choice option in the context of optimism or the expectancy of a more satisfactory alternative appearing later. Other issues reported in this domain are time pressure, consumer confidence, and alternative numbers (Dhar and Nowlis 1999; Lin and Wu 2005; Zakay and Tsal 1993). This study casts the no-choice option in yet another perspective: the interactive effects between common features and regulatory focus. Third, "regulatory focus theory" is a very popular theme in recent marketing research. It suggests that consumers have two focal goals facing each other: promotion vs. prevention. A promotion focus deals with the concepts of hope, inspiration, achievement, or gain, whereas prevention focus involves duty, responsibility, safety, or loss-aversion. Thus, while consumers with a promotion focus tend to take risks for gain, the same does not hold true for a prevention focus. Regulatory focus theory predicts consumers' emotions, creativity, attitudes, memory, performance, and judgment, as documented in a vast field of marketing and psychology articles. The perspective of the current study in exploring consumer choice and common features is a somewhat creative viewpoint in the area of regulatory focus. These reviews inspire this study of the interaction possibility between regulatory focus and common features with a no-choice option. Specifically, adding common features rather than omitting them may increase the no-choice option ratio in the choice setting only to prevention-focused consumers, but vice versa to promotion-focused consumers. The reasoning is that when prevention-focused consumers come in contact with common features, they may perceive higher similarity among the alternatives. This conflict among similar options would increase the no-choice ratio. Promotion-focused consumers, however, are possible that they perceive common features as a cue of confirmation bias. And thus their confirmation processing would make their prior preference more robust, then the no-choice ratio may shrink. This logic is verified in two experiments. The first is a $2{\times}2$ between-subject design (whether common features or not X regulatory focus) using a digital cameras as the relevant stimulus-a product very familiar to young subjects. Specifically, the regulatory focus variable is median split through a measure of eleven items. Common features included zoom, weight, memory, and battery, whereas the other two attributes (pixel and price) were unique features. Results supported our hypothesis that adding common features enhanced the no-choice ratio only to prevention-focus consumers, not to those with a promotion focus. These results confirm our hypothesis - the interactive effects between a regulatory focus and the common features. Prior research had suggested that including common features had a effect on consumer choice, but this study shows that common features affect choice by consumer segmentation. The second experiment was used to replicate the results of the first experiment. This experimental study is equal to the prior except only two - priming manipulation and another stimulus. For the promotion focus condition, subjects had to write an essay using words such as profit, inspiration, pleasure, achievement, development, hedonic, change, pursuit, etc. For prevention, however, they had to use the words persistence, safety, protection, aversion, loss, responsibility, stability etc. The room for rent had common features (sunshine, facility, ventilation) and unique features (distance time and building state). These attributes implied various levels and valence for replication of the prior experiment. Our hypothesis was supported repeatedly in the results, and the interaction effects were significant between regulatory focus and common features. Thus, these studies showed the dual effects of common features on consumer choice for a no-choice option. Adding common features may enhance or mitigate no-choice, contradictory as it may sound. Under a prevention focus, adding common features is likely to enhance the no-choice ratio because of increasing mental conflict; under the promotion focus, it is prone to shrink the ratio perhaps because of a "confirmation bias." The research has practical and theoretical implications for marketers, who may need to consider common features carefully in a practical display context according to consumer segmentation (i.e., promotion vs. prevention focus.) Theoretically, the results suggest some meaningful moderator variable between common features and no-choice in that the effect on no-choice option is partly dependent on a regulatory focus. This variable corresponds not only to a chronic perspective but also a situational perspective in our hypothesis domain. Finally, in light of some shortcomings in the research, such as overlooked attribute importance, low ratio of no-choice, or the external validity issue, we hope it influences future studies to explore the little-known world of the "no-choice option."