• Title/Summary/Keyword: Bus Protection

Search Result 84, Processing Time 0.035 seconds

Analysis of the Working Conditions of Fire Protection Systems in the Goyang Bus Terminal Building Fire (고양종합터미널화재 시 소방시설의 작동실태 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.95-107
    • /
    • 2018
  • This study analyzed the working conditions of the fire protection system in the Goyang Bus Terminal fire based on the fire investigation results. The results were as follows. First, extinguishing using an indoor fire hydrant was not attempted immediately after the fire burned the ceiling urethane foam. Second, a sprinkler alarm valve was turn off and did not work in the repair work space of the 1st basement. On the other hand, the sprinklers in the $2^{nd}$ basement, $1^{st}$ floor, $2^{nd}$ floor, and $3^{rd}$ floor worked and prevented the fire from moving to stories other than the $1^{st}$ basement. Third, although an exit light worked normally, it was not installed in the exit from the waiting room in the $2^{nd}$ floor to the bus stop. This resulted in many casualties. Fourth, although a fire receiver sent an electrical signal to the fan controller of the smoke control system, it was treated manually in the fan controller and the fan in the $2^{nd}$ floor did not work.

Design Methodology of the Bus Configuration and Protection Coordination Basic Logics of Power Substation Using EMTP-RV (EMTP-RV를 이용한 변전소 모선 방식과 보호협조 기초 논리 설계 방법론에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1129-1138
    • /
    • 2019
  • Since substations are structurally complex due to the concentration of protection coordination facilities with substation facilities for long distance power transmission, it is difficult to design a protection coordination system to minimize the spreading effect of the fault when a fault occurs on transmission line or distribution line. Therefore, in this paper, the bus configuration and the basic logic of protection coordination that have a major influence on the reliability of substation power supply were analyzed, and the substation protection coordination logic to detect internal and external faults was developed based on EMTP-RV. As the basic logic of substation protection coordination, the percent differential protection relay logic for substation internal fault detection and the overload protection relay logic for inference of external failure were modeled. Finally, the 154kV substation including the protection coordination logic was modeled using EMTP-RV, and the effectiveness of the protection coordination design methodology was confirmed through the several fault simulation cases based on EMTP-RV.

Field Bus communication design in HVDC System (HVDC 시스템의 프로피버스 통신 디자인)

  • JIANG, LILI;LEE, YILHWA;MOON, JUNMO
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.243-244
    • /
    • 2013
  • This paper introduces the application of Profibus field bus communication in HVDC power system. Discusses about the configuration of HVDC system and the structure of control and protection system. Analyzes and designs the network configuration of field device level. Using OPAS engineering tool to config IO system and at the same time monitor data in SCADA HMI.

  • PDF

A Percentage Currant Differential Relaying Algorithm for Bus Protection Using an Advanced Compensation Algorithm of the Secondary Current of CTs (개선된 변류기 2차 전류 보상알고리즘을 적용한 모선보호용 비율전류차동 계전방식)

  • Kang, Yong-Cheol;Yun, Jae-Sung;Lim, Ui-Jai
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.9-11
    • /
    • 2002
  • This paper proposes a percentage current differential relaying algorithm for bus protection using an advanced compensation algorithm of the secondary current of CTs. A percentage current differential relaying algorithm may maloperate in case of external faults with CT saturation. Thus, it needs an additional method to cope with CT saturation. The advanced compensation algorithm is unaffected by a remanent flux. The proposed relaying algorithm does not need any additional methods for CT saturation and is unaffected by the remanent flux and has the wide operating zone of current differential relays.

  • PDF

Development of IEC 61850 Performance Testing Procedures of BUS Protection IED Using UML (UML을 이용한 모선보호 IED의 IEC 61850 성능시험 절차서 개발)

  • Lee, Nam-Ho;Jang, Byung-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.767-772
    • /
    • 2008
  • Korea Electric Power Research Institute in charge of the power IT project "Development of Prototype for Advanced Substation Automation System based on the Digital Control Technology", is performing the verification of performance of the substation automation system. In order to verify a system based BUS protection IED, the standardized document and procedures are required. But there is nothing to describe systematically how to verify IEC 61850 based IED in the system environment except an individual IED testing way and report. This paper presents the substation automation system based ways and procedures to verify the IED using UML(Unified Modelling Language).

A Percentage Current Differential Relay for Bus Protection Using a Compensation Algorithm Unaffected by a Remanent Flux (잔류자속에 무관한 보상 알고리즘을 적용한 모선보호용 전류차동 계전방식)

  • Kang, Yong-Cheol;Yun, Jae-Sung;Lim, Ui-Jai
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.308-310
    • /
    • 2003
  • This paper proposes a percentage current differential relaying algorithm for bus protection with a compensation algorithm of a CT. The compensating algorithm estimates the core flux at the start of the first saturation based on the value of the third-difference of the secondary current. It calculates the core flux and compensates distorted currents in accordance with the magnetization curve. The test results indicate that the algorithm can discriminate internal faults from external faults when the CT saturates. It can improve not only stability of the relay in the case of an external fault but sensitivity of the relay in the case of an internal fault.

  • PDF

A Percentage Current Differential Relaying Algorithm for Bus Protection Using an Advanced Compensating Algorithm of the CTs (개선된 변류기 보상알고리즘을 적용한 모선보호용 비율전류차동 계전방식)

  • 강용철;윤재성;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.158-164
    • /
    • 2003
  • This paper proposes a percentage current differential relaying algorithm for bus protection using an advanced compensating algorithm of the secondary current of current transformers (CTs). The compensating algorithm estimates the core flux at the start of the first saturation based on the value of the second-difference of the secondary current. Then, it calculates the core flux and compensates distorted currents using the magnetization curve. The algorithm Is unaffected by a remanent flux. The simulation results indicate that the proposed algorithm can discriminate internal faults from external faults when the CT saturates. This paper concludes by implementing the algorithm into a TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory. The proposed algorithm can improve not only stability of the relay in the case of an external fault but sensitivity of the relay in the case of an internal fault.

A Percentage Current Differential Relaying Algorithm for Bus Protection Blocked by a CT Saturation Detection Algorithm (변류기 포화 곤단 알고리즘으로 억제된 모선보호용 비율 전류차동 계전방식)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • This paper describes a percentage current differential relaying algorithm for bus protection blocked by a CT saturation detection algorithm. The detection algorithm blocks the output of a current differential relay only if a differential current is caused by CT saturation in the case of an external fault. Moreover, if a current differential relay operates faster than the detection algorithm, the blocking signal is not ignited. On the other hand. if the detection algorithm operates faster than a current differential relay, the output of the relay is blocked. The results of the simulation show that the proposed algorithm can discriminate internal faults from external faults ever when a CT is saturated in both cases. This paper concludes by implementing the algorithm into the TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory The algorithm can not only increase the sensitivity of the current differential relay but Improve the stability of the relay for an external faults.

Circuit Improvement of 345kV Bus bar protection panel for Human Error Prevention in the event of Field Test (전력설비 시험시 인적실수 방지를 위한 345kV 모선보호 배전반 회로개선)

  • Kim, In-Sup;Lee, Jong-Seok;Jung, Si-Hwan;Kang, Dae-Eon;Seung, Jae-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.675-676
    • /
    • 2007
  • This Paper presents circuit improvement of 345kV Bus bar protection panel by using VDD (Voltage disturbance detection) relay with distinctive ability between human error in the field test and real facility faults. Therefore, We expect that this improvement of circuit helps decrease of blackout coming from human error. In order to guarantee electric power system reliability, consistent study of human error prevention in the event of field test is necessarily required

  • PDF

Operational Mode Analysis of Cooler Driver Electronics in Satellite and System Safety Margin

  • Kim, Kyudong
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.79-84
    • /
    • 2020
  • Cooler driver electronics (CDE) for maintaining low temperature of the satellite payload IR sensor consists of a compressor that has a pulsation current load condition when it is operated. This pulsation current produces large voltage fluctuation, which affects both load and regulated bus stability. Thus, CDE power conditioning system consists of a primary bus, infrared power distribution unit for battery charging and protection, reverse current protection diode, and battery, which is used as a buffer. In this study, the operational mode analysis is performed by each part with equivalent impedance modeling verified through system level simulation. From this mode analysis, the safety margin for state of charge and open circuit voltage of the battery is determined for satisfying the minimum operational voltage of the CDE load.