• Title/Summary/Keyword: Burst Creep Test

Search Result 6, Processing Time 0.021 seconds

The Evaluation of the Creep Properties of ZIRLO Cladding Using the Ring Specimen (링 시험편을 이용한 ZIRLO 피복관의 크리프 특성 평가)

  • Bae, Bong-Kook;Koo, Jae-Mean;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.279-284
    • /
    • 2004
  • In this study, we suggested the ring creep test using the ring specimen of Arsene for estimating the burst creep properties of the cladding in stead of burst creep test. For this objective, we used the load-displacement conversion relationship of ring specimen called LCRR which had been determined on our previous study at high temperature by performing the ring tensile test and the numerical analysis. Then we carried out both the ring creep test and the burst creep test between 350 $^{\circ}C$ and 600$^{\circ}C$ which were higher then the in-service temperature of the cladding in a reactor. The creep properties from the ring creep test with applying LCRR were compared with those from the burst creep test of closed-end specimens. From the results, it could be seen an very strong relationship between them, especially in Larson- Miller parameter. So, it is expected that we can easily anticipate the creep properties of not only claddings but also various small pressure pipes using the ring creep test.

  • PDF

The Evaluation of the Creep Properties of ZIRLO Cladding Using the Ring Specimen (링 시험편을 이용한 ZIRLO 피복관의 크리프 특성 평가)

  • Bae Bong-Kook;Koo Jae-Mean;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.964-969
    • /
    • 2005
  • In this study, we suggested the ring creep test using the ring specimen of Arsene for estimating the burst creep properties of the cladding in stead of burst creep test. For this objective, we used the load-displacement conversion relationship of ring specimen called LCRR which had been determined on our previous study at high temperature by performing the ring tensile test and the numerical analysis. Then we carried out both the ring creep test and the burst creep test between $350^{\circ}C$ and $600^{\circ}C$ which were higher than the in-service temperature of the cladding in a reactor. The creep properties from the ring creep test with applying LCRR were compared with those from the burst creep test of closed-end specimens. From the results, it could be seen an very strong relationship between them, especially in Larson-Miller parameter. So, it is expected that we can easily predict the creep properties of not only claddings but also various small pressure pipes using the ring creep test.

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

Analysis of Acoustic Emission Signal for Vehicle CNG Tank Using Wideband Transducer (광대역 탐촉자를 이용한 자동차용 CNG 탱크의 음향방출 신호 분석)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;So, Cheal-Ho;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This study is damage evaluation for CNG fuel tank during the burst test through the analysis of acoustic emission signals. Kaiser effect until the pressure 420 bar appears, but More than 420 bar by the creep effect appears significantly damaged vessels, and 480 bar pressure, the Kaiser effect of the rising phase was missing. Resonant transducer at 540 bar than 480 bar decreased activity such as energy and count Continually, but increased wideband transducer. In addition, through the rise time or frequency analysis of composite pressure vessels in order to observe the damage mechanisms wideband transducer is more effective than resonant transducer.

Out-of-pile Characteristics of Advanced Fuel Cladding (HANA alloys)

  • Park, Jeong-Yong;Park, Sang-Yun;Lee, Myung-Ho;Choi, Byung-Kwon;Baek, Jong-Hyuk;Kim, Jun-Hwan;Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Gyu-Tae;Jung, Youn-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.423-424
    • /
    • 2005
  • The performance of HANA claddings was evaluated in out-of-pile conditions. All the performance test results revealed that HANA claddings were superior to the reference claddings such as Zircaloy-4 and A-cladding. Corrosion resistance was improved by 60 to 70% compared to the commercial claddings. Creep, burst, tensile, LOCA, wear and microstructural properties were shown to be as good as the commercial claddings.

  • PDF

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.