• Title/Summary/Keyword: Burnup Effect

Search Result 49, Processing Time 0.027 seconds

Criticality effect according to axial burnup profiles in PWR burnup credit analysis

  • Kim, Kiyoung;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1708-1714
    • /
    • 2019
  • The purpose of the critical evaluation of the spent fuel pool (SFP) is to verify that the maximum effective multiplication factor ($K_{eff}$) is less than the critical safety limit at 100% stored condition of the spent fuel with the maximum reactivity. At nuclear power plants, the storage standard of spent fuel, ie, the loading curve, is established to prevent criticality from being generated in SFP. Here, the loading curve refers to a graph showing the minimum discharged burnup versus the initial enrichment of spent fuel. Recently, US NRC proposed the new critical safety assessment guideline (DSS-ISG-2010-01, Revision 0) of PWR SFPs and most of utilities in US is following it. Of course, the licensed criterion of the maximum effective multiplication factor of SFP remains unchanged and it should be less than 0.95 from the 95% probability and the 95% confidence level. However, the new guideline is including the new evaluation methodologies like the application of the axial burnup profile, the validation of depletion and criticality code, and trend analysis. Among the new evaluation methodologies, the most important factor that affects $K_{eff}$ is the axial burnup profile of spent fuel. US NRC recommends to consider the axial burnup profiles presented in NUREG-6801 in criticality analysis. In this paper, criticality effect was evaluated considering three profiles, respectively: i) Axial burnup profiles presented in NUREG-6801. ii) Representative PWR axial burnup profile. iii) Uniform axial burnup profile. As the result, the case applying the axial burnup profiles presented in NUREG-6801 showed the highest $K_{eff}$ among three cases. Therefore, we need to introduce a new methodology because it can be issued if the axial burnup profiles presented in NUREG/CR-6801 are applied to the domestic nuclear power plants without any other consideration.

Effect of thermal conductivity degradation on the behavior of high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.265-270
    • /
    • 1996
  • The temperature distribution in the pellet was obtained from beginning the general heat conduction equation. The thermal conductivity of pellet used the SIMFUEL data that made clear the effect of burnup on the thermal conductivity degradation. Since the pellet rim acts as the thermal barrier to heat flow. the pellet was subdivided into several rings in which the outer ring was adjusted to play almost the same role as the rim. The local burup in each ring except the outer ring was calculated from the power depression factor based on FASER results. whereas the rim burnup at the outer ring was achieved by the pellet averaged burnup based on the empirical relation. The rim changed to the equivalent Xe film so the predicted temperature shooed the thermal jump across the rim. The observed temperature profiles depended on linear heat generation rate. fuel burnup. and power depression factor. The thermal conductivity degradation modelling can be applied to the fuel performance code to high burnup fuel,

  • PDF

ECONOMIC VIABILITY TO BeO-UO2 FUEL BURNUP EXTENSION

  • Kim, S.K.;Ko, W.I.;Kim, H.D.;Chung, Yang-Hon;Bang, Sung-Sig;Revankar, Shripad T.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • This paper presents the quantitative analysis results of research on the burnup effect on the nuclear fuel cycle cost of BeO-$UO_2$ fuel. As a result of this analysis, if the burnup is 60 MWD/kg, which is the limit under South Korean regulations, the nuclear fuel cycle cost is 4.47 mills/kWh at 4.8wt% of Be content for the BeO-$UO_2$ fuel. It is, however, reduced to 3.70 mills/kWh at 5.4wt% of Be content if the burnup is 75MWD/kg. Therefore, it seems very advantageous, in terms of the economic aspect, to develop BeO-$UO_2$ fuel, which does not have any technical problem with its safety and is a high burnup & long life cycle nuclear fuel.

Threshold burnup for recrystallization and model for rim porosity in the high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.279-284
    • /
    • 1998
  • Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75${\mu}{\textrm}{m}$ and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup.

  • PDF

COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

  • Izhutov, Aleksey.L.;Iakovlev, Valeriy.V.;Novoselov, Andrey.E.;Starkov, Vladimir.A.;Sheldyakov, Aleksey.A.;Shishin, Valeriy.Yu.;Kosenkov, Vladimir.M.;Vatulin, Aleksandr.V.;Dobrikova, Irina.V.;Suprun, Vladimir.B.;Kulakov, Gennadiy.V.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.859-870
    • /
    • 2013
  • The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ${\sim}60%^{235}U$; the mini-rods were irradiated to an average burnup of ${\sim}85%^{235}U$. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ~ 40% up to ~ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ~ 40% up to ~ 85%.

SHIELDED LASER ABLATION ICP-MS SYSTEM FOR THE CHARACTERIZATION OF HIGH BURNUP FUEL

  • Ha, Yeong-Keong;Han, Sun-Ho;Kim, Hyun-Gyum;Kim, Won-Ho;Jee, Kwang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • In modem power reactors, nuclear fuels have recently reached 55,000 MWd/MtU from the initial average burnup of 35,000 MWd/MtU to reduce the fuel cycle cost and waste volume. At such high burnups, a fuel pellet produces fission products proportional to the burnup and creates a typical high burnup structure around the periphery region of the pellet, producing the so called 'rim effect'. This rim region of a highly burnt fuel is known to be ca. $200\;{\mu}m$ in width and is known to affect the fuel integrity. To characterize the local burnup in the rim region, solid sampling in the micro meter region by laser ablation is needed so that the distribution of isotopes can be determined by ICP-MS. For this procedure, special radiation shielding is required for personnel safety. In this study, we installed a radiation shielded laser ablation ICP-MS system, and a performance test of the developed system was conducted to evaluate the safe operation of instruments.

HIGH BURNUP FUEL ISSUES

  • Rudling, Peter;Adamson, Ron;Cox, Brian;Garzatolli, Friedrich;Strasser, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • One of the major current challenges to nuclear energy lies in its competitiveness. To stay competitive the industry needs to reduce maintenance and fuel cycle costs, while enhancing safety features. Extended burnup is one of the methods applied to meet these objectives However, there are a number of potential fuel failure causes related to increased burnup, as follows: l) Corrosion of zirconium alloy cladding and the water chemistry parameters that enhance corrosion; 2) Dimensional changes of zirconium alloy components, 3) Stresses that challenge zirconium alloy ductility and the effect of hydrogen (H) pickup and redistribution as it affects ductility, 4) Fuel rod internal pressure, 5) Pellet-cladding interactions (PCI) and 6) pellet-cladding mechanical interactions (PCMI). This paper discusses current and potential failure mechanisms of these failure mechanisms.

Separation of Burnup Monitors in Spent Nuclear Fuel Samples by Liquid Chromatography

  • Joe, Kih-Soo;Jeon, Young-Shin;Kim, Jung-Suck;Han, Sun-Ho;Kim, Jong-Gu;Kim, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.569-574
    • /
    • 2005
  • A coupled column liquid chromatography system was applied for the separation of the burnup monitors in spent nuclear fuel sample solutions. A reversed phase column was studied for the adsorption behavior of uranyl ions using alpha-hydroxyisobutyric acid as an eluent and used for the separation of plutonium and uranium. A cation exchange column prepared by coating 1-eicosylsulfate onto the reversed phase column was used for the separation of the lanthanides. In addition, retention of Np was checked with the reversed phase column and cation exchange column, respectively, according to the oxidation states to observe the interference effect for the separation of burnup monitors. This chromatography system showed a great reduction in separation time compared to a conventional anion exchange method. A good agreement from the burnup data was obtained between for this method and a conventional anion exchange method to within 1% of a difference for the spent nuclear fuel samples of about 40 GWD/MTU.

Neutron Spectrum Effects on TRU Recycling in Pb-Bi Cooled Fast Reactor Core

  • Kim Yong Nam;Kim Jong Kyung;Park Won Seok
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.336-346
    • /
    • 2003
  • This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction.

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.