• 제목/요약/키워드: Burnup

검색결과 289건 처리시간 0.023초

Design optimization of cylindrical burnable absorber inserted into annular fuel pellets for soluble-boron-free SMR

  • Jo, YuGwon;Shin, Ho Cheol
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1464-1470
    • /
    • 2022
  • This paper presents a high performance burnable absorber named as CIMBA (Cylindrically Inserted and Mechanically Separated Burnable Absorber) for the soluble-boron-free SMR. The CIMBA is the cylindrical gadolinia inserted into the annular fuel pellets. Although the CIMBA utilizes the spatial self-shielding effect of the fuel material, a large reactivity upswing occurs when the gadolinia is depleted. To minimize the reactivity swing of the CIMBA-loaded FA, two approaches were investigated. One is controlling the spatial self-shielding effect of the CIMBA as burnup proceeds by a multi-layered structure of the CIMBA (ML-CIMBA) and the other is the mixed-loading of two different types of CIMBA (MIX-CIMBA). Both approaches show promising performances to minimize the reactivity swing, where the MIX-CIMBA is more preferable due to its simpler fabrication process. In conclusion, the MIX-CIMBA is expected to accelerate the commercialization of the CIMBA and can be used to achieve an optimal soluble-boron-free SMR core design.

Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review

  • Slobodyan, Mikhail
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1049-1078
    • /
    • 2021
  • The review summarizes the published data on the widely applied electron-beam, laser-beam, as well as resistance upset, projection, and spot welding of zirconium alloys for nuclear applications. It provides the results of their analysis to identify common patterns in this area. Great attention has been paid to the quality requirements, the edge preparation, up-to-date equipment, process parameters, as well as post-weld treatment and processing. Also, quality control and weld repair methods have been mentioned. Finally, conclusions have been drawn about a significant gap between the capabilities of advanced welding equipment to control the microstructure and, accordingly, the properties of welded joints of the zirconium alloys and existing algorithms that enable to realize them in the nuclear industry. Considering the ever-increasing demands on the high-burnup accident tolerant nuclear fuel assemblies, great efforts should be focused on the improving the welding procedures by implementing predefined heat input cycles. However, a lot of research is required, since the number of possible combinations of the zirconium alloys, designs and dimensions of the joints dramatically exceeds the quantity of published results on the effect of the welding parameters on the properties of the welds.

Modeling and simulation of VERA core physics benchmark using OpenMC code

  • Abdullah O. Albugami;Abdullah S. Alomari;Abdullah I. Almarshad
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3388-3400
    • /
    • 2023
  • Detailed analysis of the neutron pathway through matter inside the nuclear reactor core is exceedingly needed for safety and economic considerations. Due to the constant development of high-performance computing technologies, neutronics analysis using computer codes became more effective and efficient to perform sophisticated neutronics calculations. In this work, a commercial pressurized water reactor (PWR) presented by Virtual Environment for Reactor Applications (VERA) Core Physics Benchmark are modeled and simulated using a high-fidelity simulation of OpenMC code in terms of criticality and fuel pin power distribution. Various problems have been selected from VERA benchmark ranging from a simple two-dimension (2D) pin cell problem to a complex three dimension (3D) full core problem. The development of the code capabilities for reactor physics methods has been implemented to investigate the accuracy and performance of the OpenMC code against VERA SCALE codes. The results of OpenMC code exhibit excellent agreement with VERA results with maximum Root Mean Square Error (RMSE) values of less than 0.04% and 1.3% for the criticality eigenvalues and pin power distributions, respectively. This demonstrates the successful utilization of the OpenMC code as a simulation tool for a whole core analysis. Further works are undergoing on the accuracy of OpenMC simulations for the impact of different fuel types and burnup levels and the analysis of the transient behavior and coupled thermal hydraulic feedback.

Microstructural Properties of the Insoluble Residue in a Simulated Spent Fuel

  • Kim, J.S.;Song, B.C.;Jee, K.Y.;Kim, J.G.;Chun, K.S.
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.99-111
    • /
    • 1998
  • Chemical composition of the insoluble residue in a simulated spent PWR fuel(SIMRJEL) were studied. SIMFUELS were prepared by adding calculated amount of FP(fission product) elements with a burnup of 3.6% FIMA(fission per initial metal atom) to uranium in nitrate solution, evaporating the mixed solution to dryness, calcining at 90$0^{\circ}C$ in a stream of 4% H$_2$ + 96% He, and heating the pellet at 140$0^{\circ}C$ under high and low oxygen potentials. Insoluble residue was obtained from the dissolution of the SIMFUEL with HNO$_3$(1 : 1). The chemical composition of the SIMFUELs and the insoluble residues was determined by EPMA(electron probe microanalysis), XPS(X-ray photoelectron spectroscopy) and by XRD (X-ray diffraction) measurements. All of the insoluble residues suspended and precipitated were composed mainly of Mo, Ru with a small amount of Zr, Rh, Pd and Cd. The amount of insoluble residue(<1 wt.%) and a Mo/Ru ratio decreased with increasing oxygen potential. Formation of the zirconium molybdate precipitate, ZrMo$_2$O$_{7}$(OH)$_2$($H_2O$)$_2$, was observed in the residues. The possible role of Mo on the phase formation was discussed in regard to oxygen potential.l.

  • PDF

McCARD/MIG stochastic sampling calculations for nuclear cross section sensitivity and uncertainty analysis

  • Ho Jin Park
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4272-4279
    • /
    • 2022
  • In this study, a cross section stochastic sampling (S.S.) capability is implemented into both the McCARD continuous energy Monte Carlo code and MIG multiple-correlated data sampling code. The ENDF/B-VII.1 covariance data based 30 group cross section sets and the SCALE6 covariance data based 44 group cross section sets are sampled by the MIG code. Through various uncertainty quantification (UQ) benchmark calculations, the McCARD/MIG results are verified to be consistent with the McCARD stand-alone sensitivity/uncertainty (S/U) results and the XSUSA S.S. results. UQ analyses for Three Mile Island Unit 1, Peach Bottom Unit 2, and Kozloduy-6 fuel pin problems are conducted to provide the uncertainties of keff and microscopic and macroscopic cross sections by the McCARD/MIG code system. Moreover, the SNU S/U formulations for uncertainty propagation in a MC depletion analysis are validated through a comparison with the McCARD/MIG S.S. results for the UAM Exercise I-1b burnup benchmark. It is therefore concluded that the SNU formulation based on the S/U method has the capability to accurately estimate the uncertainty propagation in a MC depletion analysis.

Fixed neutron absorbers for improved nuclear safety and better economics in nuclear fuel storage, transport and disposal

  • M. Lovecky;J. Zavorka;J. Jirickova;Z. Ondracek;R. Skoda
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2288-2297
    • /
    • 2023
  • Current designs of both large reactor units and small modular reactors utilize a nuclear fuel with increasing enrichment. This increasing demand for better nuclear fuel utilization is a challenge for nuclear fuel handling facilities. The operation with higher enriched fuels leads to reduced reserves to legislative and safety criticality limits of spent fuel transport, storage and final disposal facilities. Design changes in these facilities are restricted due to a boron content in steel and aluminum alloys that are limited by rolling, extrusion, welding and other manufacturing processes. One possible solution for spent fuel pools and casks is the burnup credit method that allows decreasing very high safety margins associated with the fresh fuel assumption in spent fuel facilities. This solution can be supplemented or replaced by an alternative solution based on placing the neutron absorber material directly into the fuel assembly, where its efficiency is higher than between fuel assemblies. A neutron absorber permanently fixed in guide tubes decreases system reactivity more efficiently than absorber sheets between the fuel assemblies. The paper summarizes possibilities of fixed neutron absorbers for various nuclear fuel and fuel handling facilities. Moreover, an absorber material was optimized to propose alternative options to boron. Multiple effective absorbers that do not require steel or aluminum alloy compatibility are discussed because fixed absorbers are placed inside zirconium or steel cladding.

Design and Structural Safety Evaluation of Canister for Dry Storage System of PWR Spent Nuclear Fuels

  • Taehyung Na;Youngoh Lee;Taehyeon Kim;Donghee Lee
    • 방사성폐기물학회지
    • /
    • 제21권4호
    • /
    • pp.559-570
    • /
    • 2023
  • The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.

Investigations on the Pu-to-244Cm ratio method for Pu accountancy in pyroprocessing

  • Sunil S. Chirayath;Heukjin Boo;Seung Min Woo
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3525-3534
    • /
    • 2023
  • Non-uniformity of Pu and Cm composition in used nuclear fuel was analyzed to determine its effect on Pu accountancy in pyroprocessing, while employing the Pu-to-244Cm ratio method. Burnup simulation of a typical pressurized water reactor fuel assembly, required for the analysis, was carried out using MCNP code. Used fuel nuclide composition, as a function of nine axial and two radial meshes, were evaluated. The axial variation of neutron flux and self-shielding effects were found to affect the uniformity of Pu and Cm compositions and in turn the Pu-to-244Cm ratio. However, the results of the study showed that these non-uniformities do not affect the use of Pu-to-244Cm ratio method for Pu accountancy, if the measurement samples are drawn from the voloxidized powder at the feed step of pyroprocessing. 'Material Unaccounted For' and its uncertainty estimates are also presented for a pyrprocessing facility to verify safeguards monitoring requirements of the IAEA.

Effect of two way thermal hydraulic-fuel performance coupling on multicycle depletion

  • Awais Zahur;Muhammad Rizwan Ali;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4431-4446
    • /
    • 2023
  • A Multiphysics coupling framework, MPCORE, has been developed to analyze safety parameters using the best estimate codes. The framework contains neutron kinetics (NK), thermal hydraulics (TH), and fuel performance (FP) codes to analyze fuel burnup, radial power distribution, and coolant temperature (Tbc). Shuffling and rotation capabilities have been verified on the Watts Bar reactor for three cycles. This study focuses on two coupling approaches for TH and FP modules. The one-way coupling approach involves coupling the FP code with the NK code, providing no data to the TH modules but getting Tbc as boundary condition from TH module. The two-way coupling approach exchanges information from FP to TH modules, so that the simplified heat conduction solver of the TH module is not used. The power profile in both approaches does not differ significantly, but there is an impact on coolant and cladding parameters. The one-way coupling approach tends to over-predict the cladding hydrogen concentration (CHC). This research highlights the difference between one-way and two-way coupling on critical boron concentration, Tbc, CHC, oxide surface temperature, and pellet centerline temperature. Overall, MPCORE framework with two-way coupling provides a more accurate and reliable analysis of safety parameters for nuclear reactors.

ESTIMATION OF THE FISSION PRODUCTS, ACTINIDES AND TRITIUM OF HTR-10

  • Jeong, Hye-Dong;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.729-738
    • /
    • 2009
  • Given the evolution of High-Temperature Gas-cooled Reactor(HTGR) designs, the source terms for licensing must be developed. There are three potential source terms: fission products, actinides in the fuel and tritium in the coolant. It is necessary to provide first an inventory of the source terms under normal operations. An analysis of source terms has yet to be performed for HTGRs. The previous code, which can estimate the inventory of the source terms for LWRs, cannot be used for HTGRs because the general data of a typical neutron cross-section and flux has not been developed. Thus, this paper uses a combination of the MCNP, ORIGEN, and MONTETEBURNS codes for an estimation of the source terms. A method in which the HTR-10 core is constructed using the unit lattice of a body-centered cubic is developed for core modeling. Based on this modeling method by MCNP, the generation of fission products, actinides and tritium with an increase in the burnup ratio is simulated. The model developed by MCNP appears feasible through a comparison with models developed in previous studies. Continuous fuel management is divided into five periods for the feeding and discharging of fuel pebbles. This discrete fuel management scheme is employed using the MONTEBURNS code. Finally, the work is investigated for 22 isotope fission products of nuclides, 22 actinides in the core, and tritium in the coolant. The activities are mainly distributed within the range of $10^{15}{\sim}10^{17}$ Bq in the equilibrium core of HTR-10. The results appear to be highly probable, and they would be informative when the spent fuel of HTGRs is taken into account. The tritium inventory in the primary coolant is also taken into account without a helium purification system. This article can lay a foundation for future work on analyses of source terms as a platform for safety assessment in HTGRs.