• Title/Summary/Keyword: Burkholderia tropica

Search Result 2, Processing Time 0.015 seconds

Burkholderia tropica as a Potential Microalgal Growth-Promoting Bacterium in the Biosorption of Mercury from Aqueous Solutions

  • Zarate, Ana;Florez, July;Angulo, Edgardo;Varela-Prieto, Lourdes;Infante, Cherlys;Barrios, Fredy;Barraza, Beatriz;Gallardo, D.I;Valdes, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1138-1149
    • /
    • 2017
  • The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was to investigate the potential of Burkholderia tropica co-immobilized with Chlorella sp. in polyurethane discs for the biosorption of Hg(II) from aqueous solutions and to evaluate the influence of different Hg(II) concentrations (0.041, 1.0, and 10 mg/l) and their exposure to different contact times corresponding to intervals of 1, 2, 4, 8, 16, and 32 h. As expected, microalgal bacterial biomass adhered and grew to form a biofilm on the support. The biosorption data followed pseudo-second-order kinetics, and the adsorption equilibrium was well described by either Langmuir or Freundlich adsorption isotherm, reaching equilibrium from 1 h. In both bacterial and microalgal immobilization systems in the co-immobilization of Chlorella sp. and B. tropica to different concentrations of Hg(II), the kinetics of biosorption of Hg(II) was significantly higher before 60 min of contact time. The highest percentage of biosorption of Hg(II) achieved in the co-immobilization system was 95% at pH 6.4, at 3.6 g of biosorbent, $30{\pm}1^{\circ}C$, and a mercury concentration of 1 mg/l before 60 min of contact time. This study showed that co-immobilization with B. tropica has synergistic effects on biosorption of Hg(II) ions and merits consideration in the design of future strategies for the removal of toxic metals.

Identification of Endophytic Bacteria Isolated from Rusty-colored Root of Korean Ginseng (Panax ginseng) and Its Induction (적변삼으로부터 분리한 내생세균의 동정 및 적변 유발)

  • Choi, Jae-Eul;Ryuk, Jin-Ah;Kim, Jin-Hee;Choi, Chun-Hwan;Chun, Jong-Sik;Kim, Young-Jun;Lee, Hyang-Burm
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • While the rusty-colored root is common in ginsengs culture and, often results in a severe economic loss, the major factors have not been found. This study was focused on the determination of a potential relationship between rusty root and endophytic bacteria. The number of endophytes was $9.6\;{\times}\;10^1{\sim}1.5\;{\times}\;10^2\;cfu/g$ fw in normal ginseng roots compared to $3.7\;{\times}\;10^6{\sim}5.1\;{\times}\;10^7\;cfu/g$ fw in rusty ones. Of 31 isolates from rusty ginseng roots, twenty-four isolates repeatedly induced severe to moderate rust on root while seven isolates induced slight rust. The bacteria responsible for rusty ginseng roots were mainly Gram negative aerobic. Rust inducing bacteria were identified as Agrobacterium tumefaciens, A. rhizogenes, Burkholderia phenazinium, Ensifer adharens, Lysobacter gummosus, Microbacterium luteolum, M. oxydans, Pseudomonas marginalis, P. veronii, Pseudomonas sp., Rhizobium leguminosarum, R. tropica, Rhodococcus erythropolis, Rh. globerulus, Variovorax paradoxus on the basis of bacteriological characters and 16S rDNA sequences analysis. The results in this study strongly suggested that the rusty ginseng roots were produced by infection and growth of endophytic bacteria.