• Title/Summary/Keyword: Buried Pipe

Search Result 283, Processing Time 0.022 seconds

Stress Distribution of Buried Concrete Pipe Under Various Environmental Conditions

  • Lee, Janggeun;Kang, Jae Mo;Ban, Hoki;Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.65-72
    • /
    • 2016
  • There are numerous factors that affect stress distribution in a buried pipe, such as the shape, size, and stiffness of the pipe, its burial depth, and the stiffness of the surrounding soil. In addition, the pipe can benefit from the soil arching effect to some extent, through which the overburden and surcharge pressure at the crown can be carried by the adjacent soil. As a result, the buried pipe needs to support only a portion of the load that is not transferred to the adjacent soil. This paper presents numerical efforts to investigate the stress distribution in the buried concrete pipe under various environmental conditions. To that end, a nonlinear elasto-plastic model for backfill materials was implemented into finite element software by a user-defined subroutine (user material, or UMAT) to more precisely analyze the soil behavior surrounding a buried concrete pipe subjected to surface loading. In addition, three different backfill materials with a native soil were selected to examine the material-specific stress distribution in pipe. The environmental conditions considering in this study the loading effect and void effects were investigated using finite element method. The simulation results provide information on how the pressures are redistributed, and how the buried concrete pipe behaves under various environmental conditions.

A Theoretical Study on the Ground Water Flow Adjacent to Buried Pipe (지중 매설관 주변의 지하수흐름에 대한 이론적 고찰)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1439-1443
    • /
    • 2011
  • A theoretical study on the ground water flow adjacent to buried pipe was conducted. Incompressible and irrotational flow were considered in analytical study. Ground water flow were defined by complex potentials. Firstly, uniform flow without buried pipe was analysed and then the effect of buried pipe was considered by superposition via circle theorem. Although two kinds of flow can be added by linearity of complex potentials, investigation of the singularities of the complex potentials should be done in advance. Finally, ground water flow past a buried pipe was analysed via complex potentials and net force exerted on the buried pipe by the ground water flowing past with circulation was derived.

The Response of Buried Flexible pipe due to Surcharge Load and Uplifting Force. (상재하중 및 인발하중으로 인한 식중매설연성관의 거동 특성)

  • 권호진;정인준
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.31-48
    • /
    • 1987
  • The vertical pressure due to soil prism load and surface surcharge load acts on buried pipe, and occasionally uplifting force due to earthquake or differential settlement acts on it. In this paper, study was performed to estimate the pressure acting on the buried pipe due to soil prism load through analyzing Marston-Spangler theory by new method. And loading tests on the buried flexible pipe were performed to study on the response of the pipe due to surface surcharge load. Also, through the estimation of uplifting resistance theory and uplifting test for buried pipe, the method to determine the maximum uplifting resistance of buried pipe was proposed.

  • PDF

Simple Parametric Analysis of the Response of Buried Pipelines to Micro-Tunneling-Induced Ground Settlements

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.29-42
    • /
    • 2014
  • This paper investigates the effects of micro-tunneling on buried pipelines parametrically. A simplified numerical approach was developed and various parametric studies have been conducted to evaluate the effects of ground settlements on the response of buried pipelines. The controlled parameters included the pipe stiffness, ground loss magnitude, and pipe location with respect to a micro-tunnel. Maximum settlement and curvature along a pipeline have been investigated and compared among others for different conditions. In addition, the numerical results have been compared with a theoretical method by Attewell et al. (1986), which is based on a Winkler type linear-elastic solution. The comparison indicated that the response of buried pipes to micro-tunneling-induced ground settlements highly depends on the soil-pipe interaction including the separation and slippage of pipe from soil with the effects of the investigated parameters. Therefore, rather than using the theoretical method directly, it would be a better assessment of the response of buried pipelines to consider the soil-pipe interaction in more realistic conditions.

Technical Review on Fitness-for-Service for Buried Pipe by ASME Code Case N-806 (ASME Code Case N-806을 활용한 매설배관 사용적합성 평가 고찰)

  • Park, Sang Kyu;Lee, Yo Seop;So, Il su;Lim, Bu Taek
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.225-231
    • /
    • 2012
  • Fitness-for-Service is a useful technology to determine replacement timing, next inspection timing or in-service when nuclear power plant's buried pipes are damaged. If is possible for buried pipes to be aged by material loss, cracks and occlusion as operating time goes by. Therefore Fitness-for-Service technology for buried pipe is useful for plant industry to perform replacement and repair. Fitness-for-Service for buried pipe is studied in terms of existing code and standard for Fitness-for-Service and a current developing code case. Fitness-for-Service for buried pipe was performed according to Code Case N-806 developed by ASME (American Society of Mechanical Engineers).

Numerical investigation of effect of geotextile and pipe stiffness on buried pipe behavior

  • Candas Oner;Selcuk Bildik;J. David Frost
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.611-621
    • /
    • 2023
  • This paper presents the results of a numerical investigation of the effect of geotextile reinforcement on underlying buried pipe behavior using PLAXIS 3D. In this study, variable parameters such as the in-plane stiffness of the geotextile, the pipe stiffness, the soil stiffness, the footing width, the geotextile width, and the location of the geotextile reinforcement layer are investigated. Deflections and bending moments acting on the pipe are evaluated for different combinations of variables and are presented graphically. It is observed that with an increase in the in-plane stiffness of the geotextile reinforcement, there is a tendency for a decrease in both deflections in the pipe and bending moments acting on the pipe. Conversely, with an increase in the pipe stiffness, geotextile reinforcement efficiency decreases. In the investigated region of soil stiffness, for the given pipe and geotextile stiffness, an optimum efficiency of geotextile is observed in medium dense soils. Further, it is shown that relative lengths of geotextile and footing has an important role on geotextile efficiency. Lastly, it is also demonstrated that relative location of geotextile layer with respect to the buried pipe plays an important role on the geotextile efficiency in reducing the bending moments acting on the pipe and deflections in the pipe. In general, geotextiles are more efficient in reducing the bending moments as opposed to reducing deflections of the pipe. Numerical validation is done with an experimental study from the literature to observe the applicability of the numerical model used.

Prediction of Long-Term behavior of polyethylene pipe buried underground (지중매설 폴리에틸렌 관의 장기거동 예측)

  • Lee, Jae-Ho;Kim, Bin;Yoon, Soo-Hyun;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Most of existing buried pipes are composed of reinforced concrete. Reinforced concrete pipes have many problems such as aging, corrosion, leaking, etc. The polyethylene (PE) pipes have advantages to solve these problems. The plastic pipes buried underground are classified into a flexible pipe. National standard that has limited the long-term vertical deformation of the pipe to 5% for flexible pipes including PE pipe. This study presents a prediction for the long-term behavior of the polyethylene pipe based on ASTM D 5365. This prediction method is presented to estimate by using the statistical method from the initial deflection measurement data. We predict the behavior of long-term performance on the double-wall pipe and multi-wall pipe. As a result, it was found that the PE pipe will be sound enough more than 50 years if the compaction of soil around the pipe is more than 95% of the standard soil compaction density.

An Experimental Study on Ground Reinforcement Effect of Concrete and Expansion Mat for Prevention of Buried Pipe Damage (지중매설관 손상 방지를 위한 콘크리트매트와 팽창매트의 지반보강효과에 관한 실험적 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Yuu, Jungjo;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.91-101
    • /
    • 2019
  • Recently, small-scale excavation like ground cavity restoration and buried pipe replacement works are being carried out in urban area, in order to improve living convenience. This paper describes experiment results on the ground reinforcement method that can reduce the buried pipe damage, when the differential settlement occurred due to poor compaction of ground below the buried pipe. Plate load tests were conducted to evaluate a reinforcement effect of ground using concrete mat and expansion mat in the ground below the buried pipe. The results showed that the stress reduction ratio by concrete mat and expansion mat according to the surcharge load was about 46%~48% and 39%~42%, respectively. Therefore, the differential settlement of the buried pipe and the ground deformation below the buried pipes were reduced by the reinforcement effect of the concrete mat and expansion mat. This means that it is possible to prevent a buried pipe damage due to underground cavity and ground subsidence, if concrete mat and expansion mat are reinforced in the ground below the buried pipe or on the ground between the buried pipes.

Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile

  • Srivastava, Amit;Sivakumar Babu, G.L.
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.169-188
    • /
    • 2011
  • Response of buried flexible pipe-soil system is studied, through numerical analysis, with respect to deflection and buckling in a spatially varying soil media. In numerical modeling procedure, soil parameters are modeled as two-dimensional non-Gaussian homogeneous random field using Cholesky decomposition technique. Numerical analysis is performed using random field theory combined with finite difference numerical code FLAC 5.0 (2D). Monte Carlo simulations are performed to obtain the statistics, i.e., mean and variance of deflection and circumferential (buckling) stresses of buried flexible pipe-soil system in a spatially varying soil media. Results are compared and discussed in the light of available analytical solutions as well as conventional numerical procedures in which soil parameters are considered as uniformly constant. The statistical information obtained from Monte Carlo simulations is further utilized for the reliability analysis of buried flexible pipe-soil system with respect to deflection and buckling. The results of the reliability analysis clearly demonstrate the influence of extent of variation and spatial correlation structure of soil parameters on the performance assessment of buried flexible pipe-soil systems, which is not well captured in conventional procedures.

Indirect Inspection Signal Diagnosis of Buried Pipe Coating Flaws Using Deep Learning Algorithm (딥러닝 알고리즘을 이용한 매설 배관 피복 결함의 간접 검사 신호 진단에 관한 연구)

  • Sang Jin Cho;Young-Jin Oh;Soo Young Shin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.