• Title/Summary/Keyword: Buoyancy-modified turbulence model

Search Result 8, Processing Time 0.019 seconds

Evaluation of the applicability of a buoyancy-modified turbulence model for free surface flow analysis based on the VOF method (VOF 기반 자유수면 흐름 해석을 위한 부력 수정 난류 모형의 적용성 평가)

  • Lee, Du Hana
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.493-507
    • /
    • 2024
  • RANS-based CFD analysis is widely applied in various engineering fields, including practical hydraulic engineering, due to its high computational efficiency. However, problems of non-physical behavior in the analysis of two phase flow, such as free surfaces, have long been raised. The two-equation turbulence models used in general RANS-based analysis were developed for single phase flow and simulate unrealistically high turbulence energy at the interface where there are abrupt changes in fluid density. To solve this issue, one of the methods recently developed is the buoyancy-modified turbulence model, which has been partially validated in coastal engineering, but has not been applied to open channel flows. In this study, the applicability of the buoyancy-modified turbulence model is evaluated using the VOF method in the open-source program OpenFoam. The results of the uniform flow showed that both the buoyancy-modified k-𝜖 model and the buoyancy-modified k-ω SST model effectively simulated the reduction of turbulence energy near the free surface. Specifically, the buoyancy-modified k-ω SST model accurately simulated the vertical velocity distribution. Additionally, the model is applied to dam-break flows to examine cases with significant surface variation and cavity formation. The simulation results show that the buoyancy-modified turbulence models produce varying results depending on the VOF method and shows non-physical behavior different from experimental results. While the buoyancy-modified turbulence model is applicable in cases with stable surface shapes, it still has limitations in general application when there are rapid changes in the free surface. It is concluded that appropriate adjustments to the turbulence model are necessary for flows with rapid surface changes or cavity formation.

Study on Thermophoresis of Highly Absorbing, Emitting Particles in Turbulent Mixed Convection Flows (난류 혼합 대류유동에서 고 흡수, 방사하는 입자의 열 확산에 관한 연구)

  • 여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.231-241
    • /
    • 1996
  • The effect of radiation and buoyancy on the thermophoresis phenomenon owing to the presence of highly absorbing, emitting particles (such as soot or pulverized coal) suspended in a two phase flow system was investigated numerically for a turbulent mixed convection flow. The analysis of conservation equations for a gas-particle flow system was performed on the basis of a two-fluid model from a continuum Eulerian viewpoint. The modified van Driest and Cebeci mixing length turbulence model was adopted in the anaylsis of turbulent flow. In addition, the P-1 approximation was used to evaluate the radiation heat transfer. As expected from the particle concentration and drift velocity distribution, the cumulative collection efficiency E (x) becomes larger when the buoyancy effect increases (i.e. higher Grashof number), while smaller as the radiation effect increases (i.e. higher optical thickness).

  • PDF

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.

A Study on the Radiation Effect of the Smoke Movement in Room Fires

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.162-175
    • /
    • 2002
  • To investigate smoke movement with radiation in a room fires, a numerical and experi-mental analysis were performed. In this paper, results from a field model based on a self-developed SMEP (Smoke Movement Estimating Program) were compared with Stockier's ex-periment and the experiments on various sized pool fires in a room with door The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k- $\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the S-N discrete ordinates method (DOM). The result of the cal-culated smoke temperature considering radiation effect has shown good agreement compared with the experimental data, although there are large discrepancy in the hot smoke layer be-tween the temperature predicted by the SMEP with only convection effect and obtained by the experimental result. This large discrepancy is caused from the radiation effect of $H_2O$ and $CO_2$ gas under smoke productions. Hence the radiation effect under smoke in fire is the point to be specially considered in order to produce more realistic result.

A Numerical Study of Smoke Movement in Atrium Fires with Ceiling Hea Flux (천장에 열 유속을 갖는 대형 공간에서 화재 발생시 연기거동에 대한 수치해석적 연구)

  • 정진용;유홍선;김성찬;김충익
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.20-29
    • /
    • 1999
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP(Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k- epsilon turbulence model with buoyancy term. Compressibility is assumed and the perfect gas law is used. The results of the calculated upper-layer average temperature and smoke layer interface height has shown reasonable agreement compared with the zone models. The zone models used are the CFAST developed at the Building and Fire Research Laboratory NIST U.S.A. and the NBTC one-room of FIRECALC developed at CSIRO, Australia. The smoke layer interface heights that are important in fire safety were not as sensitive as the smoke layer temperature to the nature of ceiling heat flux condition.

  • PDF

A Numerical Study of Smoke Movement with Radiation in Atrium Fires (아트리움에서 화재 발생시 복사가 고려된 연기거동에 대한 수치해석 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2001
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP (Smoke Movement Estimating Program) codo to the simulation of fire induced flows in the atrium space (SIVANS atrium at Japan) containing smoke radiation effect. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown a better prediction than the result calculated by only convection effect in comparison with the experimental data. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire should be necessary in order to get more realistic result. Also the numerical results indicated that the smoke layer is developing at a rate of about 0.1 m/s. It would take about 450 seconds after starting the ultra fast fire of 560 kW that the smoke layer move down to 1.5m above the escape level.

  • PDF

A Numerical Study of Radiation Effect under Smoke Movement in Room Fire (실내화재에서 연기거동에 미치는 복사영향에 대한 수치해석적 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.6-12
    • /
    • 2000
  • This paper describes the smoke movement of a fire field model based on a self-developed SMEP(Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of compartment space containing the radiation effect under smoke movement in room fire. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon $ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown reasonable agreement compared with the experimental data. On the other hand, a difference of a lot was found between the temperature predicted by the SMEP with only convection effect and obtained by the experimental result. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire may be necessary in order to produce more realistic result.

  • PDF