• Title/Summary/Keyword: Buoyancy effects

Search Result 137, Processing Time 0.021 seconds

The Effects of Thermosolutal Convection on Macrosegregation during Alloy Solidification (합금응고과정에서 이중확산대류가 거시편석에 미치는 영향)

  • Lee, Gyun-Ho;Mok, Jin-Ho;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1337-1345
    • /
    • 2001
  • Numerical investigation is made to study the effects of thermosolutal convection on the formation of macrosegregation in a Pb-Sn alloy solidification process in a two dimensional confined rectangluar mold. The basic equations are sovled using the Contrinum Model theory with the SIMPE algorithm during the solidification process. In addition, to track the liquid-solid interface with time variations, the moving boundary condition was adopted and moving irregular interface shapes were treated with the time-dependent, boundary-fitted coordinate system. As the temperature reduces from the liquidus to the solidus, the liquid concentration of Sn, the lighter constituent, increases. Then the buoyancy-driven flow due to temperature and liquid composition gradients occurs in the mushy region and forms the complicated macrosegregation maps. belated to this phenomena, effects on the macrosegregation formation depending on the cooling condition and gravity values are examined.

Stratification Variation of Summer and Winter in the South Waters of Korea (한국남해의 여름과 겨울철 성층변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.43-50
    • /
    • 2007
  • In order to calculate the strength and to. see the variation af the stratification in the Southern Waters af Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used The data used in this paper were observed in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). Also to know the effects af the temperature and the salinity an the stratification respectively, averaged temperature and salinity were used in the process af calculation the parameter. V is generally high in the offshore. However, in February, V in the onshore is higher than that of the offshore due to the vertical temperature gradient caused by the expansion of South Korean Coastal Waters (SKCW). In the summer, the increase af the atmospheric heating, the temperature inversion phenomenon act an the stratification as the buoyancy forcing. In most cases, the effects of the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent af the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect af the salinity is also significant. In the winter, V is very low due to the decrease of the buoyancy forcing, but same stations show the relatively high V due to the expansion of SKCW and Tsushima Warm Current.

  • PDF

Numerical Analysis of Peak Uplift Resistance for Pipelines Buried In Sand

  • Kwon, Dae-Hean;Seo, Young-Kyo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.158-164
    • /
    • 2017
  • A pipeline is one of the most important structures for the transportation of fluids such as oil, natural gas, and wastewater. The uplift behavior of pipelines caused by earthquakes and buoyancy is one of the reasons for the failure of pipelines. The objective of this study is to examine the peak uplift resistance using parametric studies with numerical modeling of PLAXIS 3D Tunnel. The effects of burial depth and pipe diameter on the uplift resistance of loose and dense sand were first examined. Subsequently, the effects of the length of geogrid layers and the number of geogrid layers were examined to prevent uplift behavior.

Investigation of Velocity Boundary Conditions in Counterflow Flames

  • Park, Woe-Chul;Anthony Hamins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.262-269
    • /
    • 2002
  • The effects of velocity boundary conditions on the structure of methane-air nonpremixed counterflow flames were investigated by two-dimensional numerical simulation. Two low global strain rates, 12 s$\^$-1/ and 20 s$\^$-1/, were considered for comparison with measurements. Buoyancy was conformed to have strong effects on the flame structure at a low global strain rate. It was shown that the location where a top hat velocity profile was imposed is sensitive to the flame structure, and that the computed temperature along the centerline agrees well with the measurements when plug flow was imposed at the inner surface of the screen nearest the duct exit.

An Experimental Investigation on Combined Convective Heat Transfer of NonNewtonian Fluids (비뉴톤유체의 복합대류 열전달에 관한 실험적 연구)

  • 김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1770-1779
    • /
    • 1995
  • A combined convective heat transfer study for non-Newtonian fluids was experimentally performed in uniformly heated horizontal tubes with laminar flow in the thermal entry region. Velocity profiles were fully developed at the entrance of the heated sections in the tubes. Aqueous solutions of sodium carboxymethylcellulose(CMC ) were used; their behavior showed a reasonably good fit into the power-law model, .tau.=K.gamma.$^{n}$ . The test sections were made of copper with inside diameters of 3.23 cm and 5.042 cm and lengths of approximately 300 cm. Most experimental runs displayed noticeable secondary flows caused by buoyancy ; when present, secondary flows caused significant increase in the rate of heat transfer over the purely forced-convection case. A correlation, which relates the rate of heat transfer for flows with temperature-dependent properties, free convection effects, and non-newtonian effects, was suggested.

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A.;Majeed, A.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.153-158
    • /
    • 2016
  • This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

A Study on Buoyancy Effects in Double-Diffusive Convecting System(II) - Theoretical Study - (이중확산 대류계에서의 부력효과에 관한 연구(II) - 이론적 연구 -)

  • Hong, Nam-Ho;Kim, Min-Chan;Hyun, Myung-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.129-137
    • /
    • 1999
  • The time of the onset of double-diffusive convection in time-dependent, nonlinear concentration fields is investigated theoretically. The initially quiescent horizontal fluid layer with a uniform temperature gradient experiences a sudden concentration change from below, but its stable thermal stratification affects concentration effects in such way to invoke convective motion. The related stability analysis, including Soret effect, is conducted on the basis of the propagation theory. Under the linear stability theory the concentration penetration depth is used as a length scaling factor, and the similarity transform for the linearized perturbation equations. The newlly obtained stability equations are solved numerically. The resulting critical time to mark the onset of regular cells are obtained as a function of the thermal Rayleigh number, the solute Rayleigh number, and the Soret effect coefficient. For a certain value of the Soret effect coefficient, the stable thermal gradient promote double-diffusive convective motion.

  • PDF

An Evaluation of a Direct Numerical Simulation for Counterflow Diffusion Flames (대향류 확산화염에 대한 직접수치모사의 검증)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.74-81
    • /
    • 2001
  • A direct numerical simulation (DNS) was applied to nonpremixed counter-flow diffusion flames between oxidizer and fuel ducts. The objective of this study is to evaluate the numerical method for simulation of axisymmetric counterflow diffusion flames. Effects of computational domain size and grid size were scrutinized, and then the method was applied to air-methane diffusion flames. The results at zero gravity conditions were in good agreement with those obtained by the one-dimension flame code OPPDIF. It was confirmed thai the numerical method is applicable to the diffusion flames at the normal gravity conditions since the results clearly showed the effects of buoyancy and velocity ratio.

  • PDF

A Study of Heat Transfer and Particle Deposition During Outside Vapor Deposition Process (외부증착(OVD)공정에 관한 열전달과 입자부착에 관한 연구)

  • 송영휘;최만수;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.193-202
    • /
    • 1994
  • A study of heat transfer and particle deposition has been made numerically for outside vapor deposition process. Heat conduction through the two layer cylinder which consists of the target and the deposited layer is included together with heat transfer and gas jet flow onto the cylinder from the torch. Temperature and flow fields have been obtained by an iterative method and thermophoretic particle deposition has been studied. Of particlar interests are effects of the thickness of the deposited layer, the torch speed and the rotation speed of the cylinder on particle deposition flux and efficiency. Effects of buoyancy, variable properties and tube rotation are included.

Combustion Characteristics of the Miao-Gravity Condition (미소중력장에서의 연소특성 연구)

  • Lee, Keun-Oh;Lee, Kyeong-Ook
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.66-70
    • /
    • 2002
  • The transient soot distributions within the region bounded by the droplet surface and the flame were measured using a full-filed light extinction technique and subsequent tomographic inversion using Abel transforms. The soot volume fraction results for n-heptane droplets represent the first quantitative assessment of the degree of sooting for isolated droplets burning under microgravity condition. The absence of buoyancy(which produces longer residence times) and the effects of thermophoresis produce a situation in which a significant concentration of soot is produced and accumulated into a soot-cloud. Results indicate that indeed the soot concentration within the microgravity droplet flames(with maximum soot volume fractions as high as ~60ppm) are significantly higher than corresponding values that are reports for normal-gravity flames. This increase in likely due to longer residence times and thermophoretic effects that manifested under microgravity conditions.