• Title/Summary/Keyword: Bunsen Reaction

Search Result 24, Processing Time 0.017 seconds

Experimental Investigation of Scalar Dissipation Rates in Lean Hydrocarbon/Air Premixed Flames

  • Chen, Yung-Cheng;Bilger, Robert W.
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.43-49
    • /
    • 2001
  • Instantaneous, three-dimensional scalar dissipation rates of the reaction progress variable are measured in turbulent premixed Bunsen flames of lean hydrocarbon/air mixtures with the two-sheet, two-dimensional Rayleigh scattering technique. The flames investigated are located in the turbulent flame-front regime on a newly proposed combustion diagram for premixed flames. The conditionally-averaged mean scalar dissipation rates, $N_{\zeta}$ are found to be lower than the calculated laminar values, indicating a locally broadened flame front. In agreement with previous measurements, the maximum of $N_{\zeta}$, decreases strongly with increasing Karlovitz numbers. The conditional probability density functions are close to a log-normal distribution for scalar dissipation rates conditioned at the progress variable value where the scalar dissipation is maximum in unstretched laminar flame calculations. The time scale for the Favre-averaged mean scalar dissipation rate decreases in general across the turbulent flame brush from the unburnt to burnt side.

  • PDF

Visualization of luminescent radicals in the flame by image processing (영상처리에 의한 화염 발광 라디칼의 가시화)

  • 김경찬;김영민;정주영;김태권
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.264-269
    • /
    • 1998
  • The Measurement of concentration patterns for $C_2$, CH and OH radicals in the premixed propane-air flame could be managed through an image processing technique. This technique was applied to the three kinds of flames on a bunsen burner-mixtures of fuel to be lean, optimum and excessive respectively. The image processing system was complished by treating single wavelength flame images around the eac radical luminescence band, which was obtained by using a set of narrow band pass filters, an image intensifier, CCD and PC. It was possible to observe and predict the reaction zone and the concentration distribution of the radicals, Spatial distribution of each radicals in the raaction zone gave us enough informations to analyze the reaction mechanisms in $C_mH_n$ combustion process. According to this informations, the image of $C_2$ radical exists at front zone, following the images of CH and OH radicals at downstream.

  • PDF

Decomposition of Sulfuric Acid at Pressurized Condition in a Pt-Lined Tubular Reactor (관형 Pt-라이닝 반응기를 이용한 가압 황산분해반응)

  • Gong, Gyeong-Taek;Kim, Hong-Gon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • Sulfur-Iodine (SI) cycle, which thermochemically splits water to hydrogen and oxygen through three stages of Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition, seems a promising process to produce hydrogen massively. Among them, the decomposition of $H_2SO_4$ ($H_2SO_4=H_2O+SO_2+1/2O_2$) requires high temperature heat over $800^{\circ}C$ such as the heat from concentrated solar energy or a very high temperature gas-cooled nuclear reactor. Because of harsh reaction conditions of high temperature and pressure with extremely corrosive reactants and products, there have been scarce and limited number of data reported on the pressurized $H_2SO_4$ decomposition. This work focuses whether the $H_2SO_4$ decomposition can occur at high pressure in a noble-metal reactor, which possibly resists corrosive acidic chemicals and possesses catalytic activity for the reaction. Decomposition reactions were conducted in a Pt-lined tubular reactor without any other catalytic species at conditions of $800^{\circ}C$ to $900^{\circ}C$ and 0 bar (ambient pressure) to 10 bar with 95 wt% $H_2SO_4$. The Pt-lined reactor was found to endure the corrosive pressurized condition, and its inner surface successfully carried out a catalytic role in decomposing $H_2SO_4$ to $SO_2$ and $O_2$. This preliminary result has proposed the availability of noble metal-lined reactors for the high temperature, high pressure sulfuric acid decomposition.

Bench-scale Test of Sulfuric Acid Decomposition Process in SI Thermochemical Cycle at Ambient Pressure (SI 열화학싸이클 황산분해공정의 Bench-scale 상압 실험)

  • Jeon, Dong-Keun;Lee, Ki-Yong;Kim, Hong-Gon;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2011
  • The sulfur-iodine (SI) thermochemical water splitting cycle is one of promising hydrogen production methods from water using high-temperature heat generated from a high temperature gas-cooled nuclear reactor (HTGR). The SI cycle consists of three main units, such as Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition. The feasibility of continuous operation of a series of subunits for $H_2SO_4$ decomposition was investigated with a bench-scale facility working at ambient pressure. It showed stable and reproducible $H_2SO_4$ decomposition by steadily producing $SO_2$ and $O_2$ corresponding to a capacity of 1 mol/h $H_2$ for 24 hrs.