• Title/Summary/Keyword: Bunker-A oil

Search Result 79, Processing Time 0.028 seconds

Oil Thickness Measurement by Light Absorption Analysis (흡광 광도 분석법을 이용한 기름의 두께 측정 연구)

  • Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.263-267
    • /
    • 2013
  • In this research, a novel optical measuring methodology for the measurement of oil thickness in seawater is suggested by evaluating the light absorption which is occurred in the process of penetrating through oil layer on seawater. Laser having monochromatic wave is used as a light source and photodiode which can convert the intensity of the light into an electrical signal is applied to measure the intensity of the penetrating light through the oil-water mixtures. In the experiment, bunker C and lubricating oil are used, and three different lasers having different wavelengths are applied and compared for the selection of an optimal light source. As a result, it is observed that in the case of blue laser, the intensity of the light on the optical sensor decreases with an increase in the oil thickness. Through this relation, both the presence of oil and the thickness of oil can be determined.

Production of Biosurfactant by Pseudomonas sp. SW1 for Microbial Remediation of Oil Pollution (유류오염방제를 위한 Pseudomonas sp. SW1로부터 생물계면활성제의 생산)

  • Son, Hong-Joo;Suk, Wan-Su;Lee, Geon;Lee, Sang-Joon
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.193-198
    • /
    • 1997
  • Microorganisms capable of producing biosurfactant were isolated from oil-contaminated soils and seawater. Among them, the selected strain SW1 was identified as Pseudomonas sp. by taxonomical characteristic tests, and so tentatively named Pseudomonas sp. SWI. The optimal temperature and initial pH for biosurfactant production were TEX>30^{\circ}C.$ and 7.0, respectively. The optimal medium composilion for the production of biosurfactant by Pseudomonas sp. SW1 were hexadecane of 2.0%, yeast extract of 0.04%, $K_{2}HPO_4$ of 0.02%, $KH_2PO_4$ of 0.03% and $MgSO_4$ center dot $7H_2O$ of 0.04%, respectively. Under the above conditions, minimum wrface tension was 32 mN/m after incubation of 2 days. The biosurfactant was produced during initial stationary phase in the optimal medium. Pseudotnonas sp. SWl utilized various hydrocarbons such as Bunker oils, n-alkanes and branched alkanes as a sole carbon source.

  • PDF

P. aeruginosa EMS1의 mutagen 처리를 통한 고기능 유화재 균주의 개발

  • Lee, Geun-Hui;Lee, O-Mi;Kim, Gi-Han;Cha, Mi-Seon;Son, Hong-Ju;Lee, Sang-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.556-557
    • /
    • 2001
  • This study was performed to improve the efficency of production of biosudactant which were produced by newly screened MNNGCN-Methyl-N-Nitro- Nitrosoguanidine) mutagenized P. aeruginosa EMS1. A culture grown exponentially for $30^{\circ}C$ in trypic soy brotb is adjusted to pH. MNNG is added and incubated in water bath shaker at about 250 ${\sim}$300rpm. After 20 min, is dilutecl into colded trypic soy broth and centrifugation. The cell pellet is resuspended in 50$m{\ell}$ of trypic soy broth. Cultures are grown at $30^{\circ}C$ overnight. cetyltrimethylammonium bromide-metbylene blue agar plate selected dark blue halo colony. Peanut oil, Castor oil, Olive oil, and so on were compared as carbon source of surface tension and emulsifying activity.

  • PDF

Effects of Oils and Dispersant on the Red Tide Organism Cochlodinium Polykrikoides (적조생물 Cochlodinium Polykrikoides에 대한 유류 및 유처리제의 영향)

  • Lee, Sam-Geun;Cho, Eun-Seob;Lim, Wol-Ae;Lee, Young-Sik
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.799-804
    • /
    • 2007
  • Oil spill caused severe effects on the marine fauna and flora due to direct contact of organisms with the oil and even in regions not directly affected by the spill. This study was conducted to understand the effects of the oil spill accidents and the use of dispersant on the red tide of Cochlodinium polykrikoides. Crude oil produced in Kuwait, bunker-C, kerosene and diesel oil, and a chemical dispersant produced in Korea, were added with a series of 10 ppb to 100 ppm in the f/2-Si medium at $20^{\circ}C$ under a photon flux from cool white fluorescent tubes of $100\;mol\;m^{-2}\;s^{-1}$ in a 14: 10 h L:D cycle for the culture of C. polykrikoides. In low concentrations of ${\leq}$ 1 ppm of examined oils no impact on the growth of C. polykrikoides was recorded, while in high concentration of ${\geq}$ 10 ppm, cell density was significantly decreased with the range of 10 to 80% in comparison with the control. The growth of C. polykrikoides after the addition of the dispersant and the mixtures combined with oils and a dispersant of ${\geq}$ 10 ppm appeared to decrease, whereas the growth of C. polykrikoides exposed to ${\leq}$ 100 ppb showed little serious impact. However, almost all the C. polykrikoides cells were died regardless of a dispersant and combined mixtures within a few days after the addition of high concentrations.

Asphalt Sealant Containing the Waste Edible Oil (폐식용유를 이용한 아스팔트 실란트)

  • Kim, Seong-Jun
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • This work is about the development or asphalt sealant using the waste edible oil. Asphalt sealant has been used for crack filler and bridge deck joint sealer Several plasticizers such as aromatic or paraffin process oils, DOP, Bunker C fuel oil, and waste edible oil were compounded with the basic components such as asphalt(AP-5), a thermoplastic elastomer(SBS triblock copolymer), a tackifying agent(petroleum resin), and stabilizers. Penetration, softening point, ductility, and elongation by tensile adhesion of those asphalt sealant compounds were measured. Their properties were changed largely depending on both the type and content of plasticizers. Waste edible oil and DOP were the best plasticizers for the low temperature tensile adhesion characteristics. Penetration and elongation by tensile adhesion of asphalt sealant compounds increased with the increase of waste edible oil content and decreased with the increase of talc content. The manufacture of asphalt sealant with low penetration and excellent low temperature tensile adhesion was possible by the recipe optimization.

Effect of Fuel Mixing Ratio on Fuel Consumption in a Oil Fired Power Plant (중유화력발전소에서 바이오연료 혼합연소가 연료소비량에 미치는 영향)

  • Hong, Sangpil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • Each of fuel consumption per hour was measured at the 320 MW and 380 MW generator output while changing mixing ratio of bio fuel oil to 50%, 80% and 100%. Fuel consumption per hour was increased from 11.0% to 20.4% as mixing ratio of bio fuel oil was changed from 50% to 100% at the 320 MW generator output comparing with fuel consumption per hour in case of bunker-C oil single firing. Fuel consumption per hour was also increased from 12.0% to 21.1% as mixing ratio of bio fuel oil was changed from 50% to 100% at the generator output 380 MW. Furthermore, it was confirmed that plant efficiency was decreased as mixing ratio of bio fuel oil was increased from 50% to 100% as a result that plant efficiency was calculated using the measured fuel consumption per hour, the generator output and the gross heating value.

  • PDF

Development of an Unmanned Conveyor Belt Recovery Skimmer for Floating Marine Debris and High Viscosity Oil (무인 컨베이어 벨트식 부유쓰레기 및 고점도유 회수장비 개발 연구)

  • Han, Sang-goo;Lee, Won-ju;Jang, Se-hyun;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.208-215
    • /
    • 2017
  • When persistent oil, such as crude oil or Bunker C oil, is spilled at sea, viscosity increases through the weathering process. Equipment that can collect this oil when mixed with floating marine debris is very limited. In this study, devices that can be attached to the outside of existing oil skimmers have been applied to the inside of the main body, to develop an unmanned conveyor belt type floating marine debris and high viscosity oil recovery skimmer, which is composed of a conveyor belt, a sweeper with a forced inflow device, and a collection tank equipped with a buoyant body. The resulting skimmer was operated at a speed of 1.2 knots at a distance of 30 m in a sea area test. It was stable when moving laterally in any direction. An oil recovery performance test was conducted using a portable storage tank, and oil was recovered from a minimum of $7.8k{\ell}/h$ to a maximum of $23.3k{\ell}/h$. Moreover, recovery of $7.7k{\ell}/h$ was obtained in a wave water tank test with floating marine debris such as PET bottles and oil mixed. If the equipment developed in this study was used in the field for oil pollution accidents, it could be expected to contribute to improved response capability. We believe our equipment could be used in further studies to improvement the performance of existing portable oil skimmers.

Derivation of Optimum Operating Conditions for Electrical Resistance Heating to Enhance the Flushing Effect of Heavy Oil Contaminated Soil (중질유 오염토양의 세정효과를 증진시키기 위한 전기저항가열의 최적 운전조건 도출)

  • Lee, Hwan;Jung, Jaeyun;Kang, Doore;Lee, Cheolhyo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • This study evaluated the applicability of the convergence technology by deriving the optimum conditions about operating factors of electrical resistance heating to enhance the soil flushing effect on soil contaminated with bunker C oil in the coastal landfill area. As a result of the batch scale experiment, the flushing efficiency of the VG-2020 was higherthan that of the Tween-80, and the flushing efficiency increased by about 1.4 times at 60℃ compared to room temperature. As a result of the electrical resistance heating box experiment, soil temperature rose to 100℃ in about 40~80 minutes in soil with water content of 20~40%, and it was found that the heat transfer efficiency is excellent when the pipe-shaped electrode rod with STS 316 material is located in a triangular arrangement in saturated soil. In addition, it was confirmed that the interval between the electrode rods to maintain the soil temperature above 60℃ under the optimum conditions was 1.5 m, and the soil flushing box experiment accompanying electrical resistance heating showed TPH reduction efficiency of about 55% at 5 Pore Volume, and satisfied the Korean standard for the conservation of soil (less than TPH 2,000 mg/kg) at 10 Pore Volume.

Vertical arrangement of coils for efficient cargo tank heating

  • Magazinovic, Gojko
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.662-670
    • /
    • 2019
  • Tanker cargo tanks are equipped with the means of raising and maintaining the cargo discharge temperature to a suitable level. In this paper, a new heating coil design is proposed and analyzed. Contrary to conventional designs, wherein the heating coils are evenly distributed over the tank bottom, the proposed design arranges the heating coils in the central part of the tank bottom, in a vertical direction. Due to the intensive cargo circulation generated, a forced convection is superimposed on a buoyancy-driven natural convection, providing a more efficient mixed convection heat transfer mechanism. Numerical simulations performed by using a finite volume method show that in the case of 7-bar steam Bunker C heavy fuel oil heating, a five-hour circulation phase average heat transfer coefficient equals 199.2 W/m2K. This result might be taken as an impetus for the more thorough experimental examination.

A Study on the Characteristics Measurement of Main Engine Exhaust Emission in Training Ship HANBADA (실습선 한바다호 주기관 배기가스 배출물질 특성 고찰에 관한 연구)

  • Choi, Jung-Sik;Lee, Sang-Deuk;Kim, Seong-Yun;Lee, Kyoung-Woo;Chun, Kang-Woo;Nam, Youn-Woo;Jung, Kyun-Sik;Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.658-665
    • /
    • 2013
  • In this study, we measured particulate matter(PM) which emerged as the hot issue from the International Maritime Organization(IMO) and the exhaust emission using HANBADA, the training ship of Korea Maritime University. In particular, the PM was obtained with TEM grid. PM structure was observed by electron microscopy. And exhaust gases such as NOx, $CO_2$, and CO were measured using the combustion gas analyzer(PG-250A, HORIBA). The results of this study are as follows. 1) When the ship departed from the port, the maximum difference in PM emissions were up to 30 % due to the Bunker Change. 2) Under the steady navigation, emission of PM was $1.34mg/m^3$ when Bunker-A is changing L.R.F.O(3 %). And, at the fixed L.R.F.O (3 %), emission of PM was $1.19mg/m^3$. When the main engine RPM increased up to 20 % with fixed L.R.F.O(3 %), emission of PM was $1.40mg/m^3$. When we changed to low quality oil(L.R.F.O(3 %)), CO concentration from main engine increased about 16 %. On the other hand, when the main engine RPM is rising up to 20 %, CO concentration is increased more than 152 percent. These results imply that the changes of RPM is a dominant factor in exhaust emission although fuel oil type is an important factor. 3) The diameter of PM obtained with TEM grid is about $4{\sim}10{\mu}m$ and its structure shows porous aggregate.