• Title/Summary/Keyword: Bulk melting

Search Result 110, Processing Time 0.033 seconds

Electric Properties of High-Tc Ceramic Superconductor for Breaker (차단기 적용을 위한 초전도체의 합성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.90-93
    • /
    • 2018
  • This aim of this study was to develop a process for creating bulk single-crystal YBaCuO superconductors in a high magnetic field. To support the bulk unidirectional growth of $YBa_2Cu_3O_{7-y}$, $SmBa_2Cu_3O_{7-y}$ seeds were planted inside YBaCuO composites and samples were produced by melting, enabling the growth of two YBaCuO superconductors. Due to the magnetism generated inside the superconductor of the upper sample, the magnetization inside the superconducting single crystals was evenly distributed, the sharpness of the induced magnetic force was improved, and the superconducting magnetization were significantly improved. This approach is widely applicable for the production of superconducting wires and current leads used for DC power breakers.

Development of Superconducting Bulk for Superconductor Mortor (초전도모터 적용을 위한 벌크개발)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1311_1312
    • /
    • 2009
  • In this article, current state of development of energy storage system using superconductor was summarized. As a result of continuous efforts, high critical current density exceeding $10^4\;A/cm^3$ at 77K and strong levitation capacity have been achieved in Y-Ba-Cu-O superconductor which is fabricated by melting technique. Various applications using the levitation properties of high-Tc superconductor is expected to come true in near future.

  • PDF

Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method (수정된 증발법을 이용하여 제작된 주석 나노입자의 녹는점 강하에 관한 연구)

  • Kim, Hyun Jin;Beak, Il Kwon;Kim, Kyu Han;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.695-700
    • /
    • 2014
  • In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be $129^{\circ}C$, which is $44^{\circ}C$ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

Analysis of Quartz Content and Particle Size Distribution of Airborne Dust from Selected Foundry Operations (주물사업장 주공정별 발생하는 분진의 석영함유량 및 크기분포 연구)

  • Phee, Young Gyu;Roh, Young Man;Lee, Kwang Mook;Kim, Hyoung-Ah;Kim, Yong Woo;Won, Jeoung Il;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.196-208
    • /
    • 1997
  • This study was performed to estimate quartz contents in the both bulk and airborne dust samples and to determine particle size distribution of airborne dust from the selected foundry operations. Total dust samples were collected by a 37mm cassette and respirable by a 10 mm nylon cyclone. Particle size distributions were determined by a Marple's 8-stage cascade impactor at the melting, molding, shakeout and finishing operations. The presence of elements in the dust samples were confirmed by the scanning electron microscopy equipped with the energy dispersive x-ray spectrometry. The quartz contents were estimated using the intensity of the absorption peak of quartz at 799 cm-l by the Fourie Transformed Infrared Spectroscopy (FTIR). The results were as follows: 1. The analysis of data from cascade Impactor showed bimodal distributions of particle size at the melting, molding and shakeout operations. Mass median aerodynamic diameters for the distributions determined by histogram were $0.48-1.65{\mu}m$ for small and $13.43-19.58{\mu}m$ for large modes. In the dust samples collected at the finishing operations, however, only a large mode of $18.89{\mu}m$ was found. 2. The percentages of total to respirable dust concentration calculated from the impactor data ranged from 42 % to 66 %. The average concentrations of respirable dust by cyclone were $0.85-1.28mg/m^3$ collected from the workers, and were $0.23-0.56mg/m^3$ from the areas surveyed. Dust concentrations of personal samples were statistically significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. 3. The mean percentages of silicon and oxygen estimated by SEM-EDXA in the bulk samples ranged from 35.83 % to 36.02 % and from 39.93 %-41.64 %, respectively. 4. The average quartz contents estimated by FTIR in the respirable dust from personal samples ranged from 4.32 % to 5.36 % and 4.54 % to 4.70 % in the bulk samples. No statistical difference of quartz content was found between foundry operations. In this study, quartz content was quantified by FTIR. Although no statistically significant difference in quartz content between airborne and bulk, samples and between different foundry operations was found, it is recommended that quartz content in the individual sample of respirable dust be analyzed and the results be used either to select an applicable quartz limits or to calculate the exposure limit. Further studies, however, are needed to compare the results by FTIR and XRD since it is reported that the quartz content determined by FTIR is different from that by XRD.

  • PDF

Thermal Stability Enhanced Ge/graphene Core/shell Nanowires

  • Lee, Jae-Hyeon;Choe, Sun-Hyeong;Jang, Ya-Mu-Jin;Kim, Tae-Geun;Kim, Dae-Won;Kim, Min-Seok;Hwang, Dong-Hun;Najam, Faraz;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.376-376
    • /
    • 2012
  • Semiconductor nanowires (NWs) are future building block for nano-scale devices. Especially, Ge NWs are fascinated material due to the high electrical conductivity with high carrier mobility. It is strong candidate material for post-CMOS technology. However, thermal stability of Ge NWs are poor than conventional semiconductor material such as Si. Especially, when it reduced size as small as nano-scale it will be melted around CMOS process temperature due to the melting point depression. Recently, Graphene have been intensively interested since it has high carrier mobility with single atomic thickness. In addition, it is chemically very stable due to the $sp^2$ hybridization. Graphene films shows good protecting layer for oxidation resistance and corrosion resistance of metal surface using its chemical properties. Recently, we successfully demonstrated CVD growth of monolayer graphene using Ge catalyst. Using our growth method, we synthesized Ge/graphene core/shell (Ge@G) NW and conducted it for highly thermal stability required devices. We confirm the existence of graphene shell and morphology of NWs using SEM, TEM and Raman spectra. SEM and TEM images clearly show very thin graphene shell. We annealed NWs in vacuum at high temperature. Our results indicated that surface melting phenomena of Ge NWs due to the high surface energy from curvature of NWs start around $550^{\circ}C$ which is $270^{\circ}C$ lower than bulk melting point. When we increases annealing temperature, tip of Ge NWs start to make sphere shape in order to reduce its surface energy. On the contrary, Ge@G NWs prevent surface melting of Ge NWs and no Ge spheres generated. Furthermore, we fabricated filed emission devices using pure Ge NWs and Ge@G NWs. Compare with pure Ge NWs, graphene protected Ge NWs show enhancement of reliability. This growth approach serves a thermal stability enhancement of semiconductor NWs.

  • PDF

Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process (방전 플라즈마 소결(Spark Plasma Sintering) 방법에 의해 제조된 Nb-Si-B계 합금의 미세조직 특성)

  • Kim, Sang-Hwan;Kim, Nam-Woo;Jeong, Young-Keun;Oh, Sung-Tag;Kim, Young Do;Lee, Seong;Suk, Myung Jin
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.426-431
    • /
    • 2015
  • Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and $T_2$ phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb-Si-B ternary system are prepared by spark plasma sintering (SPS) process using $T_2$ and Nb powders. $T_2$ bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The $T_2$ bulk phase was subsequently ball-milled to powders. SPS is performed at $1300^{\circ}C$ and $1400^{\circ}C$, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.

Formation of electric circuit for printed circuit board using metal nano particles (금속 나노 입자를 이용한 인쇄 회로 기판의 회로 형성)

  • Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.545-545
    • /
    • 2007
  • Recently, innovative process has been investigated in order to replace the conventional high-cost micro patterning processes on the electronic products. To produce desirable profit margins from this low cost products, printed circuit board(PCB), will require dramatic changes in the current manufacturing philosophies and processes. Innovative process using metal nano particles replaces the current industry standard of subtractive etched of copper as a highly efficient way to produce robust circuitry on low cost substrates. An advantage of using metal nano particles process in patterned conductive line manufacturing is that the process is additive. Material is only deposited in desired locations, thereby reducing the amount of chemical and material waste. Simply, it just draws on the substrate as glass epoxy or polyimide with metal nano particles. Particles, when their size becomes nano-meter scale, show some specific characteristics such as enhanced reactivity of surface atoms, decrease in melting point, high electric conductivity compared with the bulk. Melting temperature of metal gets low, the metal nano particles could be formated onto polymer substrates and sintered under $300^{\circ}C$, which would be applied in PCB. It can be getting the metal line of excellent electric conductivity.

  • PDF

YBCO Bulk Superconductors Prepared by Solid-liquid Melt Growth (고액용융성장법을 이용한 YBCO 단결정 제조)

  • Han, Sang-Chul;Lee, Jeong-Phil;Park, Byeong-Cheol;Jeong, Neyon-Ho;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Sung, Tae-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.860-863
    • /
    • 2009
  • YBCO bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed modified powder melting process method, Solid-Liquid Melt Growth(SLMG), with $Y_2O_3$, $BaCuO_2$ and CuO mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the processing became to be simpler and cheaper than the current powder melting process. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been analyzed and the effect of Pt additive was studied. The different trapped magnetic field values of the several samples have been explained in the viewpoint of their microstructures. The fabrication of large-sized YBCO single domain has been conducted.

A Study on the Structure Properties of Amorphous $As_{40}Se_{50-x}S_{x}Ge_{10}$ Thin Film (비정질 $As_{40}Se_{50-x}S_{x}Ge_{10}$ 박막의 구조특성에 관한 연구)

  • 김종빈;정홍배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.106-112
    • /
    • 1992
  • In this paper, we analyze the structure characteristics of $As_{40}Se_{50-x}S_{x}Ge_{10}$ system bulk and thin films. As the results of XRD patterns, it identified amorphous state. In order to find the glass transition temperature($T_g$), crystallization($T_c$) and melting point ($T_m$)of bulk sample, it ascertained that TS1gT is 238$^{\circ}C$ in $As_{40}Se_{15}S_{35}Ge_{10}$, and 231$^{\circ}C$ in $As_{40}Se_{25}S_{25}Ge_{10}$ & $As_{40}Se_{50}Ge_{10}$ following the thernal analysis by DSC, DTA, & TGA method. Also it was confirmed the phase seperation of continuous phase and dispertion phase by the optical texture of polarizing microscope and $T_g$ near 20$0^{\circ}C$ in thin film. Therefore, it was found that it occurs the phase seperation of Ge-rich dontinuous phase and Se-rich dispersion phase following the EDS analysis of thin film and the surface SEM photograph.

  • PDF