• 제목/요약/키워드: Bulk heterojunction

검색결과 83건 처리시간 0.024초

New Donor Materials Based on Thiazole and Triphenylamine for Photovoltaic Devices

  • Ro, Tak-Kyun;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2897-2902
    • /
    • 2012
  • New photovoltaic donor materials, 4,4'-(2,2'-bithiazole-5,5'-diyl)bis(N,N-diphenylbenzenamine) (BDT) and 4-(2,2'-bithiazol-5-yl)-N,N-diphenylbenzenamine (BT), were synthesized. A solution processable triphenylamine-containing bithiazole (BDT and BT) was blended with a [6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM) acceptor to study the performance of small-molecule-based bulk heterojunction (BHJ) photovoltaic devices. Optimum device performance was achieved after annealing, for device with a BDT/PCBM ratio of 1:4. The open-circuit voltage, short-circuit current, and power conversion efficiency of the device with the aforementioned BDT/PCBM ratio were 0.51 V, 4.10 $mA\;cm^{-2}$, and 0.68%, respectively, under simulated AM 1.5 solar irradiation (100 $mW\;cm^{-2}$).

Effects of Fused Thiophene Bridges in Organic Semiconductors for Solution-Processed Small-Molecule Organic Solar Cells

  • Lee, Jae Kwan;Lee, Sol;Yun, Suk Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2148-2154
    • /
    • 2013
  • Three push-pull organic semiconductors, TPA-$Th_3$-MMN (1), TPA-ThTT-MMN (2), and TPA-ThDTT-MMN (3), comprising a triphenylamine donor and a methylene malononitrile acceptor linked by various ${\pi}$-conjugated thiophene units were synthesized, and the effects of the ${\pi}$-conjugated bridging unit on the photovoltaic characteristics of solution-processed small-molecule organic solar cells based on these semiconductors were investigated. Planar bridging units with extended ${\pi}$-conjugation effectively facilitated intermolecular ${\pi}-{\pi}$ packing interactions in the solid state, resulting in enhanced $J_{sc}$ values of the SMOSCs fabricated with bulk heterojunction films.

고분자 태양전지용 플러렌 유도체 (Fullerene derivatives for Polymer Bulk-heterojunction Solar Cells)

  • 신원석;황용묵;윤성철;이창진;문상진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.246-249
    • /
    • 2007
  • 현재까지 $P3HT:C_{60}-PCBM$계는 고분자 유기 태양전지에서 가장 좋은 효율을 보여주고 있다. 그러나 보다 고효율의 소자 제작을 위해 신재료에 대한 연구들이 활발히 진행되고 있으며, 본 연구에서는 $C_{60}-PCBM$ 대신 $C_{70}-PCBM$을 합성하여 소자를 제작하였다. $C_{70}-PCBM$$C_{60}-PCBM$에 비하여 가시광선 영역에서 상대적으로 높은 광흡수율을 보여 주었으며, 이것은 광전류의 향상을 가져왔다. 소자제작의 주요 변수로 $P3HT:C_{70}-PCBM$ 광활성층의 처리 조건, 즉, 용매, 조성비, 열처리 조건, 광활성층의 두께 등을 조절하였는데, buffer층(LiF 층) 등이 도입되지 않은 간단한 제작조건 하에서도 본 $C_{70}-PCBM$$C_{60}-PCBM$계에 버금가는 3.5% (AM 1.5G, 100 $mW/cm^{2}$ 조건) 이상의 효율을 나타내었다.

  • PDF

The Fabrication and Characterization of the Photovoltaic Cells Composed of Polydiacetylene and Fullerene

  • Song Jeong-Ho;Kang Tae-Jo;Cho Young-Don;Lee Sun-Hyoung;Kim Jeong-Soo
    • Fibers and Polymers
    • /
    • 제7권3호
    • /
    • pp.217-222
    • /
    • 2006
  • Propargyl alcohol was coupled to 2,4-hexadiyne-1,6-diol (HDD) and crystallized in the process of ultraviolet irradiation-induced topochemical polymerization. The HDD polymer crystals were used as one component in the fabrication of organic photovoltaic cells, in combination with fullerene as the electron acceptor. The various structures of the produced photovoltaic cells included bilayer, trilayer, and bulk heterojunction structures. Their photovoltaic properties were analyzed in relation to crystal structure, electrochemical properties, and band structure of the HOD polydiacetylene polymers.

The Study on the the P3HT:PCBM Bulk Heterojunction Solar Cells Utilizing $WO_3$ Nano-particle As a Hole Transporting Layer

  • 최하나;김성현;김경곤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.321-321
    • /
    • 2010
  • The PEDOT:PSS layer is usually used as hole transporting layer for the polymer bulk heterojunction solar cells. However, the interface between ITO and PEDOT:PSS is not stable and the chemical reaction between ITO and PEDOT can result in degraded device performance. We used the tungsten oxides as a hole transport layer by spin-coating. The $WO_3$ nanoparticles were well dispersed in ammonium hydroxide and deionized water and formed thin layer on the ITO anode. We found that $WO_3$ surface is more hydrophobic than the bare ITO or PEDOT:PSS-coated surfaces. The hydrophobic surfaces promote an ordered growth of P3HT films. A higher degree of P3HT ordering is expected to improve the hole mobility and the lifetime of the device using the tungsten oxide showed better stability compared to the device using the PEDOT:PSS.

  • PDF

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.

Synthesis and Characterization of New Dihydroindolo[3,2-b]indole and 5,6-Bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-Based Polymer for Bulk Heterojunction Polymer Solar Cells

  • Kranthiraja, Kakaraparthi;Gunasekar, Kumarasamy;Song, Myungkwan;Gal, Yeong-Soon;Lee, Jae Wook;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1485-1490
    • /
    • 2014
  • We have designed and developed a new ladder type tetrafused ${\pi}$-conjugated building block such as dihydroindolo[3,2-b]indole (DINI) and investigated its role as an electron rich unit. The photovoltaic properties of a new semiconducting ${\pi}$-conjugated polymer, poly[[5,10-bisoctyl-5,10-dihydroindolo[3,2-b]indole-[5,6- bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole]], represented by PDINI-OBTC8 are described. The new polymer PDINI-OBTC8 was synthesized in donor-acceptor (D-A) fashion, where fused ${\pi}$-conjugated tetracyclic DINI, and 5,6-bis(octyloxy)-4,7-di(thiophen-2-yl) benzo[c][1,2,5]thiadiazole (OBTC8) were employed as electron rich (donor) and electron deficient (acceptor) moieties, respectively. The conventional bulk heterojunction (BHJ) device structure ITO/PEDOT:PSS/PDINI-OBTC8:PCB71M/LiF/Al was utilized to fabricate polymer solar cells (PSCs), which comprises the blend of PDINI-OBTC8 and [6,6]-phenyl-$C_{71}$-butyric acid methyl ester ($PC_{71}BM$) in BHJ network. A BHJ PSC that contain PDINI-OBTC8 delivered power conversion efficiency (PCE) value of 1.68% with 1 vol% of 1,8-diidooctane (DIO) under the illumination of A.M 1.5G 100 $mW/cm^2$.

가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구 (Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications)

  • 이정민;서성용;임영수;백강준
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).

Annealing 온도에 따른 bulk heterojunction 유기태양전지의 특성분석 (Analysis of Thermal Annealing Effect on the Power Conversion Efficiency of Heterojunction Organic Photovoltaics)

  • 김영훈;김민성;박성규;강정원;한정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.177-178
    • /
    • 2008
  • 열처리 조건이 이종접합 유기태양전제(heterojunction organic photovoltaics)의 power conversion efficiency(PCE)에 미치는 영향에 대해 살펴보았다. 본 연구에서는 열처리 온도와 열처리 시간을 변수로 다양한 조건하에서 유기태양전지를 제작하고 AM1.5G 조건에서의 효율 변화를 관찰하였다. 열처리 온도는 $90^{\circ}C$에서 $170^{\circ}C$까지 변화시키며 태양전지의 특성변주를 측정하였으며, 유리 기판 상에 제작된 태양전지의 경우에 $150^{\circ}C$의 열처리 온도에서 가장 우수한 효율을 나타내었다.

  • PDF

Organic photovoltaic cells using low sheet resistance of ITO for large-area applications

  • 김도근;강재욱;김종국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.5.1-5.1
    • /
    • 2009
  • Organic photovoltaic (OPV)cells have attracted considerable attention due to their potential for flexible, lightweight, and low-cost application of solar energy conversion. Since a 1% power conversion efficiency (PCE) OPV based on a single donor-acceptor heterojunction was reported by Tang, the PCE has steadily improved around 5%. It is well known that a high parallel (shunt)resistance and a low series resistance are required simultaneously to achieve ideal photovoltaic devices. The device should be free of leakage current through the device to maximize the parallel resistance. The series resistance is attributed to the ohmic loss in the whole device, which includes the bulk resistance and the contact resistance. The bulk resistance originated from the bulk resistance of the organic layer and the electrodes; the contact resistance comes from the interface between the electrodes and the active layer. Furthermore, it has been reported that the bulk resistance of the indium tin oxide (ITO) of the devices dominates the series resistance of OPVs for a large area more than $0.01\;cm^2$. Therefore, in practical application, the large area of ITO may significantly reduce the device performance. In this work, we investigated the effect of sheet resistance ($R_{sh}$) of deposited ITO on the performance of OPVs. It was found that the device performance of polythiophene-fullerene (P3HT:PCBM) bulk heterojunction OPVs was critically dependent on Rsh of the ITO electrode. With decreasing $R_{sh}$ of the ITO from 39 to $8.5\;{\Omega}/{\square}$, the fill factor (FF) of OPVs was dramatically improved from 0.407 to 0.580, resulting in improvement of PCE from $1.63{\pm}0.2$ to $2.5{\pm}0.1%$ underan AM1.5 simulated solar intensity of $100\;mW/cm^2$.

  • PDF