• Title/Summary/Keyword: Bulk graphite

Search Result 50, Processing Time 0.029 seconds

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite

  • Choi, Jong-Min;Kim, Tae-Jin;Hyun, Min-Soo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lee, Byung-Rok;Park, Jong-Soo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~$200^{\circ}C$ and pressure of 200~300 kg/$cm^2$. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of $160^{\circ}C$ and pressure of 300 kg/$cm^2$. These properties were close to the DOE reference criteria as bulk resistance of 13 $m{\Omega}cm$ and tensile strength of 515 kg/$cm^2$.

  • PDF

The Diameter Expansion of 6H-SiC Single Crystals by the Modification of Inner Guide Tube (새로운 가이드 튜브를 통한 6H-SiC 단결정의 직경 확장에 관한 연구)

  • Son, Chang-Hyun;Choi, Jung-Woo;Lee, Gi-Sub;Hwang, Hyun-Hee;Choi, Jong-Mun;Ku, Kap-Ryeol;Lee, Won-Jae;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.795-800
    • /
    • 2008
  • A sublimation method using the SiC seed crystal and SiC powder as the source material is commonly adopted to grow SiC bulk single crystal. However, it has proved to be difficult to achieve the high quality crystal and the process reliability because SiC single crystal should be grown at very high temperature in closed system. The present research was focused to improve SiC crystal quality grown by PVT method through using the new inner guide tube. The new inner guide tube was designed to prevent the enlargement of polycrystalline region into single crystalline region and to enlarge the diameter of SiC single crystal. The 6H-SiC crystals were grown by conventional PVT process. The seed adhered on seed holder and the high purity SiC source materials are placed on opposite side in sealed graphite crucible surrounded by graphite insulation. The SiC bulk growth was conducted around 2300 $^{\circ}C$ of growth temperature and 50 mbar in an argon atmosphere of growth pressure. The axial thermal gradient across the SiC crystal during the growth was estimated in the range of 15${\sim}$20 $^{\circ}C$/cm.

Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting (연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향)

  • Yoon, Sanghyeon;Cho, Mun-Kyu;Jeong, Doo Hoa;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.

Fabrication and PTCR Characteristics of Porous Barium Titanate Thermistors using Graphite Powders

  • Yoo, Kwang-Soo;Yun, Young-Ho;Lee, Yong-Seok;Lee, Byung-Ha
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.238-241
    • /
    • 1996
  • New porous BaTiO$_3$ thermistors were fabricated using graphite powders (0 to 10 wt. %) and their porosities were in the range of 9.1% to 16.2%. As results of impedance analysis, it was confirmed that the pores affected the grain-boundary resistance and the bulk (grain interior) resistance was constant as about 25 $\Omega$ at room temperature. The magnitude of PTCR effect $(p_{max}/p)$ markedly increased from 3 orders to 7 orders without addition of any acceptor dopant such as Mn or Cr.

  • PDF

X-Ray Diffraction Measurements of Ion-Irradiated Graphite

  • Kim, Dae-Jong;Jang, Chang-Heui;Kim, In-Sup;Kim, Eung-Seon;Chi, Se-Hwan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.411-412
    • /
    • 2005
  • There are some differences as a result of comparison between internal and external standard method. Thin-film XRD was used to measure the thin damaged layer by proton irradiation. Experiment was performed by external standard method to measure bulk sample accurately. A little changes of crystallite size and lattice parameter by small dose were observed. X-ray penetrates too deeply above damaged layer of graphite despite of small X-ray incident angle.

  • PDF

Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders (연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구)

  • Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

Diameter Expansion of 6H-SiC Single Crystals by the Modification of Crucible Structure Design (도가니 구조 변경을 통한 6H-SiC 단결정의 직경 확장에 관한 연구)

  • Kim, Jung-Gyu;Kyun, Myung-Ok;Seo, Jung-Doo;An, Joon-Ho;Kim, Jung-Gon;Ku, Kap-Ryeol;Lee, Won-Jae;Kim, Il-Soo;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.673-679
    • /
    • 2006
  • A sublimation method using the SiC seed crystal and SiC powder as the source material is commonly adopted to grow SiC bulk single crystal. However, it has proved to be difficult to achieve the high quality crystal and the process reliability because SiC single crystal should be grown at very high temperature in closed system. In this study, SiC crystal boules were prepared with different angles in trapezoid-shaped graphite seed holders using sublimation physical vapor transport technique (PVT) and then their crystal quality was systematically investigated. The temperature distribution in the growth system and the crystal shape were varied with angles in trapezoid-shaped graphite seed holders, which was successfully simulated using 'Virtual Reactor'. The SiC polytype proved to be the n-type 6H-SiC from the typical absorption spectrum of SiC crystal. The micropipe densities of SiC wafers in this study were measured to be < $100/cm^2$. Consequently, SiC single crystal with large diameter was successfully achieved with changing angle in trapezoid-shaped graphite seed holders.

Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite (천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅)

  • Gyuri, Kim;Yeongwon, Kwak;Ho Young, Jun;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2022
  • The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoliation (LPE) which utilizes ultrasonic waves or shear stresses to exfoliate bulk graphite into graphene flakes that are a few layers thick. Graphene dispersion produced via LPE can be transformed into graphene ink to further boost graphene's applications, but producing high-quality graphene more economically remains a challenge. To overcome this shortcoming, an advanced LPE process should be developed that uses relatively cheap natural graphite as a graphene source. In this study, a flow-LPE process was used to exfoliate natural graphite to produce graphene that was three times cheaper and seven times larger than synthetic graphite. The optimal exfoliation conditions in the flow-LPE process were determined in order to produce high-quality graphene flakes. In addition, the structural and electrical properties of the flakes were characterized. The electrical properties of the exfoliated graphene were investigated by carrying out an ink formulation process to prepare graphene ink suitable for inkjet printing, and fabricating a printed graphene pattern. By utilizing natural graphite, this study offers a potential protocol for graphene production, ink formulation, and printed graphene devices in a more industrial-comparable manner.

Silicon Nitride Layer Deposited at Low Temperature for Multicrystalline Solar Cell Application

  • Karunagaran, B.;Yoo, J.S.;Kim, D.Y.;Kim, Kyung-Hae;Dhungel, S.K.;Mangalaraj, D.;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.276-279
    • /
    • 2004
  • Plasma enhanced chemical vapor deposition (PECVD) of silicon nitride (SiN) is a proven technique for obtaining layers that meet the needs of surface passivation and anti-reflection coating. In addition, the deposition process appears to provoke bulk passivation as well due to diffusion of atomic hydrogen. This bulk passivation is an important advantage of PECVD deposition when compared to the conventional CVD techniques. A further advantage of PECVD is that the process takes place at a relatively low temperature of 300t, keeping the total thermal budget of the cell processing to a minimum. In this work SiN deposition was performed using a horizontal PECVD reactor system consisting of a long horizontal quartz tube that was radiantly heated. Special and long rectangular graphite plates served as both the electrodes to establish the plasma and holders of the wafers. The electrode configuration was designed to provide a uniform plasma environment for each wafer and to ensure the film uniformity. These horizontally oriented graphite electrodes were stacked parallel to one another, side by side, with alternating plates serving as power and ground electrodes for the RF power supply. The plasma was formed in the space between each pair of plates. Also this paper deals with the fabrication of multicrystalline silicon solar cells with PECVD SiN layers combined with high-throughput screen printing and RTP firing. Using this sequence we were able to obtain solar cells with an efficiency of 14% for polished multi crystalline Si wafers of size 125 m square.

  • PDF