• Title/Summary/Keyword: Bulk Flow

Search Result 448, Processing Time 0.025 seconds

Process Design of Cold Forged Hub by Flow Control Forming Technique (유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계)

  • Park, Jong-Nam;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.

Research on Improvement of Performance of Anemometer Using PTC Thermistor (PTC 서미스터를 이용한 유속계의 성능향상에 관한 연구)

  • Yoon, Joon-Yong;Cho, Nahm-Gyoo;Kim, Jin-Rae;Sung, Nak-Won;Kim, Hwang-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.15-21
    • /
    • 2000
  • An anemometer employing the bulk PTC thermistor as the sensing element is investigated in this study. The numerical and experimental works are carried out to improve the sensitivity problem of the element by focusing fluid dynamics point of view. The typical shape of the sensing element has been used as a rectangular type, but this shape has a sensitivity problem because of flow separations on the sharp edge when the flow direction is different from that of the sensing element. In order to reduce the reading error, the installer has to be very careful about the flow direction. The reading error fluctuation by time as well as the sensitivity problem can be improved considerably through this study. It can be concluded that the small change of the sensor shape can improve the performance of the flow sensor.

  • PDF

The wake flow control behind a circular cylinder using ion wind (이온풍을 이용한 실린더 뒤의 후류 제어)

  • Hyun K T;Chun C H
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.459-462
    • /
    • 2002
  • Many active and passive flow control methods have been studied since decades, but there are only few works about flow control methods using ion wind. This paper presents an experimental study on the wake control behind a circular cylinder using ion wind, a bulk motion of neutral molecules driven by locally ionized air of corona discharge. Experiments are done f3r different electrohydrodynamic numbers - the ratio of an electrical body farce to a fluid Inertial force - from 0 to 2 and for the Reynolds number ranging from $4{\times}10^3\;to\;8{\times}10^3$. Pressure distributions over a cylinder surface are measured and flow visualizations are carried out by smoke wire method. Flow visualizations confirm that ion wind affects significantly the wake structure behind a circular cylinder and pressure drag could be dramatically reduced by the superimposing ion wind.

  • PDF

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Rectangular Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 사각 유로를 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Kuen;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.512-519
    • /
    • 2009
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental data. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap was performed. Auto correlation for the axial-flow velocity pattern was presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

A Study on the Physical Characteristics of Steel-Wire Sound Absorbing Materials (금속와이어 흡음재의 물리적 특성에 관한 연구)

  • 주경민;이동훈;용호택
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1244-1249
    • /
    • 2002
  • In this study, the physical characteristics of steel-wire sound absorbing materials with different thickness and bulk density is experimentally obtained in terms of the porosity and specific flow resistivity. Based on the experimental results, the following conclusions can be made. The porosities of steel-wire sound absorbing materials are smaller than those of general absorbing materials, which are inversely proportional to the volume densities. For the porosity measurement with a good accuracy, the dynamic correction based on the system compliance should be involved in porosity measurement. In addition, the flow condition for the precise measurement of the specific flow resistivity of steel-wire sound absorbing materials should be limited in the laminar flow region.

  • PDF

An Experimental Study of the Effect of Flow on Flame Propagation in a Constant-Volume Combustion Chamber (정적연소기내 유동형태가 화염전파에 미치는 영향 연구)

  • Jeong, D.S.;Oh, S.M.;Suh, S.W.;Chang, Y.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.136-145
    • /
    • 1995
  • The aim of this study is to gain a better understanding of the effect of a flow motion on the flame development by means of an optically-accessible constant-volume combustion chamber and the visualization technique of a combustion flame. At first, the characteristics of a flame propagation are investigated in the combustion field of the two kinds of flow conditions such as a quiescent and a flowing condition, and methane-air mixture is used as fuel. Then the same investigation is performed in two flow configurations : bulk flow motion type and turbulence generating type. In this study, the combustion phenomena are analyzed by measuring the combustion pressure, flame propagation speed, mean velocity, turbulent intensity, and mass fraction burned.

  • PDF

A numerical study on the flow in an eccentric annulus (편심 환형관내 유동에 대한 수치 해석적 연구)

  • Woo, Nam-Sub;Seo, Byung-Taek;Bae, Kyung-Su;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1863-1868
    • /
    • 2004
  • The present study concerns a computational study of fully developed laminar flow of a Newtonian fluid through an eccentric annulus with a combined bulk axial flow and inner cylinder rotation. This study considers the identical flow geometry as in the calculation of Escudier et $al.^{(3)}$ An unexpected feature of the calculations for eccentricity ${\varepsilon}$)0.7 is the appearance of a second peak in the axial velocity, located in the narrowing gap. The distribution of the axial component of the surface shear stress has a maximum in the narrowing gap and a minimum in the widening gap.

  • PDF

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 두 채널을 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Hong, Seong-Ho;Shin, Jong-Kuen;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2810-2815
    • /
    • 2008
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental result. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap is presented. Auto and cross correlation for the axial-flow velocity pattern are presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

  • PDF

A Study on the Flow of Drilling Fluids in Slim hole Annuli (굴착유체의 Slim Hole 환형관 내 유동특성에 관한 연구)

  • Seo Byung-Taek;Woo Nam-Sub;Hwang Young-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2006
  • The paper concerns an experimental study of fully developed laminar flow of a Newtonian and non-Newtonian liquid in concentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured for Newtonian fluid, water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose (CMC) and 5% bentonite solutions, when the inner cylinder rotates at the speed of $0{\sim}500$ rpm. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated. And the new correlations among the skin friction coefficient, the Reynolds number and the Rossby number are presented with reasonable limits of accuracy in laminar flow regime.