• 제목/요약/키워드: Bulbous Bow

검색결과 47건 처리시간 0.024초

Collision-Damage Analysis of a Floating Offshore Wind Turbine Considering Ship-Collision Risk

  • Young-Jae Yu;Sang-Hyun Park;Sang-Rai Cho
    • 한국해양공학회지
    • /
    • 제38권3호
    • /
    • pp.124-136
    • /
    • 2024
  • As the number of offshore wind-power installations increases, collision accidents with vessels occur more frequently. This study investigates the risk of collision damage with operating vessels that may occur during the operation of an offshore wind turbine. The floater used in the collision study is a 15 MW UMaine VolturnUS-S (semi-submersible type), and the colliding ships are selected as multi-purpose vessels, service operation vessels, or anchor-handling tug ships based on their operational purpose. Collision analysis is performed using ABAQUS and substantiation is performed via a drop impact test. The collision analyses are conducted by varying the ship velocity, displacement, collision angle, and ship shape. By applying this numerical model, the extent of damage and deformation of the collision area is confirmed. The analysis results show that a vessel with a bulbous bow can cause flooding, depending on the collision conditions. For damage caused by collision, various collision angles must be considered based on the internal stiffener arrangement. Additionally, the floater can be flooded with relatively small collision energy when the colliding vessel has a bulbous bow.

SNUFOAM을 이용한 2차원 선박단면 형상의 입수 충격에 대한 연구 (A STUDY ON WATER ENTRY OF TWO-DIMENSIONAL CROSS-SECTIONAL SHAPE USING SNUFOAM)

  • 장동진;최영민;최학규;이신형
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.55-63
    • /
    • 2016
  • Nowadays, large container ships are continually developed and that's why the bow and stern structural stability problems by slamming become a significant more and more. However, due to the complexity of slamming, it is difficult to consider those problems at the design stage. For this reason, we attempt numerical analysis through SNUFOAM by generating the bow and stern two-dimensional cross-sectional grid in WILS JIP experiment at KRISO. Unlike the conventional method for the computation time saving, by setting the inlet flow conditions referred to the model test, we analyzed the slamming without applying the grid deformation method. As a result, when the stern model, as in the previous studies, it was possible to obtain quantitatively the fluid impulse is close to the experimental results. When the bow model, we can found the change by the position of force sensors which are derived for the bulbous bow and obtained fluid impulse and flow shape at slamming similar to the model test.

선형설계를 통한 G/T 29톤급 근해채낚기 어선의 저항성능 개선 (Improvement of the Resistance Performance for a G/T 29ton Class Coastal Angling Fishing Boat based on Hull-form Design)

  • 하윤진;이영길;이승희;김상현;유진원;백영수;배동균
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.521-529
    • /
    • 2014
  • In this study, numerical simulations and model tests are performed for the hull-form development of a G/T 29ton class coastal angling fishing boat. The numerical simulations are mainly used for the design of bow hull-form and the resistance performance is improved by the adoption of high bulbous bow. And, the resistance performances of the existing boat and the designed boat are verified by the model tests. The results of the experiments and calculations show that the effective power of the designed boat is 13.6% less than that of the existing boat at design speed. Therefore, the results of this research could be used as one of the fundamental data for the design of G/T 29ton class coastal angling fishing boat.

CSR적용 극비대선의 저항성능 개선에 관한 연구 (Study on the Resistance Improvement for an Extremely Full Ship Under CSR)

  • 박현석;김태훈;오세형;김병남;김우전;유재훈;조성훈
    • 대한조선학회논문집
    • /
    • 제48권2호
    • /
    • pp.99-106
    • /
    • 2011
  • The appearance of CSR changes the concept of the hull form design as well as structural design, since the application of CSR inevitably brings the lightweight increase of a ship. Keeping the original design constraints such as principal particulars, deadweight, and speed performance, designers have to increase the volume of the hull form. As a result, the entrance angle at bow end should become larger, which results in blunter waterline shape. For a slow and full ship having high $C_B$ more than 0.85, a new concept of bow shape has been required to alleviate the increase of wave-making resistance, since it is very difficult to improve waterline and frameline shape for such a full ship. In this paper a new bow shape of Capesize Bulk Carrier was developed to improve its wave-making characteristics without incompliance with the design constraints. For loading manual calculation, NAPA software was used. FLUENT6.3.26 and WAVIS1.4 were used to evaluate resistance performance of the subject hull forms. The newly designed hull form was tested at SSPA model basin for the final confirmation of resistance and propulsion performance of the ship. It was found that the new bow shape of a Capesize Bulk Carrier improved the resistance characteristics greatly compared to a conventional bulbous bow. The other benefits of new bow shape on the manufacturability were also investigated.

G/T 190톤급 한국 대형선망 본선의 저항저감에 대한 연구 (A Study on the Resistance Reduction of G/T 190ton Class Main Vessel in Korean Large Purse Seiner Fishing System)

  • 박애선;이영길;김두동;유진원;하윤진;진송한
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.367-375
    • /
    • 2012
  • In this study, hull form of main vessel of Korean large purse seiner fishing industry is developed for the improvement of resistance performance as well as for the satisfaction to the Standard of Fishing Convention, ILO. Through the modification of reference hull form parameters and local characteristics, the hull form development is carried out. The optimum hull form parameters are searched by Sequential Quadratic Programing(SQP) method with the power estimation method of Holtrop & Mannen. To minimize the wave resistance, bulbous bow parameters are determined by the bulbous bow design method of Alvarino. The plasmatic curve is redesigned from that of the reference hull by using Lackenby method. The resistance performances of the reference and designed hull forms are estimated by using numerical simulation method. Also, the judgment of seakeeping ability and the estimation of intact stability for the designed hull form is carried out. As a result, the optimum hull form is proposed. To verify the improvement of resistance performance, model tests are carried out in towing tank. The results show that the resistance of the designed hull form is about 14% smaller than that of the reference hull from at design speed. A new hull form proposed in this study can contribute to the development of the main vessel hull form of Korean large purse seiner fishing system.

비선형파를 고려한 비대선의 선수선형설계에 관한 연구 (A Study on the Bow Hull Form Design of Full Ship Considering the Nonlinear Waves)

  • 유진원;이영길;최시영;최영찬;정광열;하윤진
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.671-679
    • /
    • 2010
  • This paper introduces a new hull form design method for the bow of a full ship, by actively applying the relation between the fore-body hull form and its wave resistance characteristics. For the hull form design, the Series 60($C_B=0.8$) hull is chosen as the parent ship, and Kracht's charts are used to determine the parameters of the bulbous bow in the early stages of hull form design. Several hull forms have been tested in order to obtain enough hull form variations with various bow shapes and design parameters in the search of the best design. In order to investigate the resistance characteristics of the designed hull forms, numerical simulations with corresponding model tests have been rigorously performed. For the numerical simulations, the Marker-density method is employed to track the nonlinear phenomena of the free surface(program IUBW). Model tests have also been performed to achieve an improved research performance using the designed hulls. Both numerical and experimental results show that the wave resistance of the hull forms can be effectively diminished if the bows are designed using the method introduced in this research. It is also expected that this research can facilitate better productivity in hull form design, especially at the preliminary design stage of a full ship type vessel.

Scenario based optimization of a container vessel with respect to its projected operating conditions

  • Wagner, Jonas;Binkowski, Eva;Bronsart, Robert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.496-506
    • /
    • 2014
  • In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

빙 해역에서 유조선의 조종 모형시험에 대한 연구 (Maneuvering Experiments in Ice on a Single Screw Tanker)

  • 김현수
    • 대한조선학회논문집
    • /
    • 제45권5호
    • /
    • pp.495-501
    • /
    • 2008
  • Samsung Heavy Industries (SHI) and NRC's Institute for Ocean Technology (IOT) collaborated on a project to predict the performance of a new design for a Suezmax size tanker that had acceptable open water performance but was also capable of operating in ice. The resulting hull form was a single screw, single rudder design with a bulbous bow, modified for operation in ice. An important design consideration is the ability of the ship to maneuver in different ice conditions. This paper presents the results of maneuvering experiments in pack ice and level ice, using a free running model.

유조선의 간이 충돌/좌초강도 평가시스템 개발 (Development of Simplified Collision and Grounding Strength Assessment System of Oil Tankers)

  • 이탁기;김재동;전태병
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제2권2호
    • /
    • pp.86-94
    • /
    • 1999
  • This paper describes a development of Collision/grounding Strength Assessment System (COSAS) using simplified method. This method is formulated in closed-form equation by taking into account crushing caused by bulbous bow collision and cutting caused by forward speed grounding. To verify the accuracy of the developed system, some examples for test models of double side/bottom structure in collision/grounding situation are considered. This system might be useful for analysis of structural damage of oil tankers in collision/grounding.

  • PDF

Longitudinal Cut 파형해석의 응용을 위한 특성연구 (Study on th Wave-Pattern Analysis by Longitudinal Cut Method)

  • 강신형;이영길
    • 대한조선학회지
    • /
    • 제18권1호
    • /
    • pp.9-18
    • /
    • 1981
  • The wave-pattern analysis has been one of important research tools in the towing tank, and applied for hull form design. The longitudinal-cut method of Newman and Sharma is adopted in KRIS deep towing tank. Instrumentations and data acquisition systems are developed for that. Local effects and truncation effects are estimated by using calculated wave patterns of simple source distributions. Wigley model of 2m is used to check the accuracy of the whole system. Cut positions and truncation points are changed to investigate characteristics of the wave-pattern analysis. Coefficients of wave-pattern resistance are low-estimated in comparison with those of Maruo and Ikehata. The general quality of the system is very good, but some more efforts to increase the accuracy are required. Two full-form models(one basic form, the other with bulbous bow) are tested to show high application-possibilities of the wave-pattern analysis for the hull form design.

  • PDF