• Title/Summary/Keyword: Built-in Sensors

Search Result 318, Processing Time 0.037 seconds

Survey on robotics and automation technologies for civil infrastructure

  • Myung, Hyun;Wang, Yang;Kang, Shih-Chung Jessy;Chen, XiaoQi
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.891-899
    • /
    • 2014
  • Over the past several decades, substantial amounts of sensors and sensing systems have been developed for civil infrastructure systems. This special issue focuses on state-of-the-art robotics and automation technologies, including construction automation, robotics, instrumentation, monitoring, inspection, control, and rehabilitation for civil infrastructure. The issue also covers construction informatics supporting sensing, analysis and design activities needed to operate smart and sustainable civil infrastructure. Examples include robotic systems applied to civil infrastructure and equipped with various sensing technologies, such as optical sensors, laser sensors, wireless sensors, multi-sensor fusion, etc. This special issue is published in an effort to disseminate current advances of various robotics and automation technologies for civil infrastructure and built environment.

Implementation of Environmental Information Monitoring System using Multi-Query Indexing Technique and Wireless Sensor (다중 질의 색인기법과 무선 센서를 이용한 환경정보 모니터링 시스템 구현)

  • Kim, Jung-Yee;Lee, Kang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.307-312
    • /
    • 2007
  • Wireless Sensor Network(WSN) is considered as a core technology necessary for Ubiquitous computing, with its numerous possible applications in many practical areas, is being researched and studied actively by many around the world. WSN utilizes wireless sensors spatially placed to gather information regarding temperature, light condition, motion and change in speed of the objects within their surrounding environment. This paper implements an environmental information monitoring and indexing system based on spatial indexing technique by constructing a WSN system. This Multi-Query Indexing Technique coupled with wireless sensors provides an output based on the pre-defined built-in data index and new input from the sensors. If environment data is occured, system have to perform a proper action after collecting and analyzing this data. This is the purpose of implementing environment data monitoring system. We constructed environmental application using TinyOS and built tested with MICAz sensor bords. We designed and implemented a monitoring system which detects and multi-indexing process environmental data from distributed sensors.

  • PDF

A Study on Development of Ubiquitous Bio-Sensors for Increasing Energy Efficiency (에너지 효용 증대를 위한 바이오 센서 개발에 관한 연구)

  • Han, Seung-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.58-63
    • /
    • 2008
  • It is essential to investigate the structure and the main characteristic of Home USN (Ubiquitous Sensor Network) technologies in built ubiquitous environment while designing bio-sensors. For this study, Thermistor elements and Thermopile black body have been selected to implement ubiquitous technologies for bio-sensors and wireless network such as WiBro has been used to transfer sensing data to the BSN (Bio-Sensor Network) gateway. It is certain that efficiency of ubiquitous space design is improved if main components of each specific sensor network are analyzed precisely in digital way and corresponding communication modules are prepared accordingly. Ubiquitous technology, in conclusion, has to be applied not only with systematical mechanism or electronic setting but in human-centered atmosphere as well, keeping with deep consideration for bio-housing service factors in eco-friendly surrounding.

An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis

  • Malekzadeh, Masoud;Gul, Mustafa;Kwon, Il-Bum;Catbas, Necati
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.917-942
    • /
    • 2014
  • Multivariate statistics based damage detection algorithms employed in conjunction with novel sensing technologies are attracting more attention for long term Structural Health Monitoring of civil infrastructure. In this study, two practical data driven methods are investigated utilizing strain data captured from a 4-span bridge model by Fiber Bragg Grating (FBG) sensors as part of a bridge health monitoring study. The most common and critical bridge damage scenarios were simulated on the representative bridge model equipped with FBG sensors. A high speed FBG interrogator system is developed by the authors to collect the strain responses under moving vehicle loads using FBG sensors. Two data driven methods, Moving Principal Component Analysis (MPCA) and Moving Cross Correlation Analysis (MCCA), are coded and implemented to handle and process the large amount of data. The efficiency of the SHM system with FBG sensors, MPCA and MCCA methods for detecting and localizing damage is explored with several experiments. Based on the findings presented in this paper, the MPCA and MCCA coupled with FBG sensors can be deemed to deliver promising results to detect both local and global damage implemented on the bridge structure.

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

Sensing Properties of Porous Silicon Layer for Organic Vapors (다공질 실리콘의 유기가스 검지 특성)

  • 김성진;이상훈;최복길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.963-968
    • /
    • 2002
  • In this work, porous silicon (PS) layer is investigated as a sensing material to detect organic vapors such as ethanol (called alcohol), methanol, and acetone in low concentrations. To do this, PS sensors were fabricated. They have a membrane structure and comb-type electrodes were used to detect the change of electrical resistance effectively. PS layer on Si substrates was formed by anodization in HF solution of 25%. From fabricated sensors, current-voltage (Ⅰ-Ⅴ) curves were measured for gases evaporated from 0.1 to 0.5% organic solution concentrations at 36$\^{C}$. As the result, all curves showed rectifying behavior due to a diode structure between Si and the PS layer. The conductance of most sensors increased largely at high voltage of 5V, but the built-in potential on the measured Ⅰ-Ⅴ curve was lowered inversely by the adsorption effect of the organic vapors with high dipole moment.

A USB Device for Plug&Play of Sensor/Actuator In Linux (리눅스에서 센서/구동기의 Plug&Play를 위한 USB장치)

  • Eun, Seongbae;So, Sun Sup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.329-332
    • /
    • 2022
  • Since IoT devices include various sensors and drivers, application programmers need to understand the structure and characteristics of sensors and actuators. If the manufacturer provides the driver of the sensor or actuator, IoT development can be efficiently carried out, which is called the Plug & Play technique. What matters is that the technique proposed by this research team in the past are not suitable for Arduino or Raspberry-Pi, which are recently used. In this paper, we propose a USB sensor device that can be mounted on a Raspberry-Pi. When the device is plugged into the Raspberry-Pi, the built-in driver is transmitted and played. The configuration of the USB sensor device was presented, and considerations for chip selection for processing sensors and drivers were presented.

A Dynamic Configuration of Calibration Points using Multidimensional Sensor Data Analysis (다중 센서 데이터 분석을 이용한 동적보정점 결정 기법)

  • Kim, Byoung-Sub;Kim, Jae-Hoon
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.49-58
    • /
    • 2016
  • Focusing on the drastic increase of smart devices, machine generated data expansion is a general phenomenon in network services and IoT (Internet of Things). Especially, built-in multi sensors in a smart device are used for collection of user status and moving data. Combining the internal sensor data and environmental information, we can determine landmarks that decide a pedestrian's locations. We use an ANOVA method to analyze data acquired from multi sensors and propose a landmark classification algorithm. We expect that the proposed algorithm can achieve higher accuracy of indoor-outdoor positioning system for pedestrians.

Impact Damage Detection in a Composite Stiffened Panel Using Built-in Piezoelectric Active Sensor Arrays (배열 압전 능동 센서를 이용한 복합재 보강판의 충격 손상 탐지)

  • Park, Chan-Yik;Cho, Chang-Min
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.21-27
    • /
    • 2007
  • Low-velocity impact damage in a composite stiffened panel was detected using built-in piezoelectric active sensor arrays. Using these piezoelectric active sensors, various diagnostic signals were generated to propagate Lamb waves through the structure and the responses were picked up to detect changes in the structure's vibration signature due to the damage. Three algorithms - ADI(Active Damage Interrogation), TD RMS (Time Domain Root Mean Square) and STFT (Short Time Fourier Transform) - were examined to express the features of the signal changes as one damage index. From damage detecting tests, two impact induced delaminations were detected and the location was estimated with the algorithms and diagnostic signals.

A Study on Automatic Analysis Method of Human Behavior Using K-Mean Clustering of Smartphone Acceleration Sensor (스마트폰 가속도 센서의 K-평균 클러스터링을 이용한 사람행동 자동분석 방법에 대한 연구)

  • Park, Jong-Kun;Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.486-487
    • /
    • 2019
  • Smartphones have various sensors built in. In particular, acceleration sensors are used to analyze human behavior because they can detect movement of objects. Previous studies have analyzed the behavior of people by analyzing the magnitude of acceleration sensor values. In this study, we proposed a method of detecting the motion by applying the K-average of the acceleration sensor value built in the smartphone. We proposed a method of recognizing walking and running, which is basic human behavior, by applying K-average of acceleration sensor value of smartphone.

  • PDF