• 제목/요약/키워드: Building-integrated photovoltaic

검색결과 155건 처리시간 0.021초

Multitasking Façade: How to Combine BIPV with Passive Solar Mitigation Strategies in a High-Rise Curtain Wall System

  • Betancur, Juan
    • 국제초고층학회논문집
    • /
    • 제6권4호
    • /
    • pp.307-313
    • /
    • 2017
  • This paper outlines the processes and strategies studied and selected by the team during the design stages of the project for the incorporation of BIPV into the tower's façade. The goal was to create a system that helps reduce internal heating and cooling loads while collecting energy through photovoltaic panels located throughout the building. The process used to develop this façade system can be broken down into three stages. 1. Concept: BIPV as design catalyst for a high-rise building. 2. Optimization: Balancing BIPV and Human comfort. 3. Integration: Incorporating BIPV into a custom curtain wall design. The FKI Project clearly illustrates the evolution building enclosures from simple wall systems to high performance integrated architectural and engineering design solutions. This design process and execution of this project represent the design philosophy of our firm.

태양광 발전의 성능향상을 위한 PV/T 시스템 개발 (Development of PV/T for Performance Improvement of Photovoltaic System)

  • 최정식;고재섭;정동화
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.173-181
    • /
    • 2011
  • 본 논문에서는 건물통합형 태양광 발전 시스템의 전기적 열적 성능을 얻기 위해 하이브리드 PV/T 모듈을 제시한다. 건물 외벽에 부착하는 BIPV 시스템은 태양광 발전 시 온도상승으로 인하여 시스템의 효율이 떨어진다. 이러한 문제점의 해결과 BIPV 시스템의 효율을 향상시키기 위해 수냉방식을 적용시키고 발생된 열은 온수 시스템에 사용된다. 수냉 냉각방식은 전력손실과 물의 온도를 고려한 유량제어 알고리즘을 이용하고 실증연구를 통하여 제시한 하이브리드 PV/T 모듈의 전기적 열적 성능을 확인하여 본 논문의 타당성을 입증한다.

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권1호
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.

공동주택을 위한 PV 시스템 적용기법 개발 연구 (A Study on the Development of PV Application for Apartment Buildings)

  • 노지희;윤철;이소미;주만식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.269-274
    • /
    • 2008
  • Nowaday, The Sustainable Development about global environment is the most important subject. In urban environment, a variety of the nature energy utilization such as the solar energy are the most efficient solution to solve this issue. One of these efficient, solutions, a photovoltaic system using sunlight has been introduced to the building with an advantage such as cost-effective, safe for using and good for environment friendly in light with energy utilization. Recently, many of the apartment housings are built in domestic country. The apartment buildings have been constructed since early of 1970's. now apartment is taking over 50% out of entire housing in korea. The apartment housing applying to a photovoltaic system has been extensively studied in the foreign country but our county runs short. So, It was necessary to technical development of PV application which is suitable in Korean house culture. The objective of this study is to develop the building integrated PV application method for apartment building.

  • PDF

후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구 (Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside)

  • 윤종호;김재웅
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

독립형 에너지 하우스 전력시스템에서의 BIPV용 Optimizer에 대한 연구 (A Study on Optimizer for Building Integrated Photovoltaic System of Energy Independent House)

  • 조영찬;신덕식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.229-230
    • /
    • 2018
  • 본 논문은 태양광 기반의 '독립형 에너지 하우스'의 전체 전력 시스템과 태양광 외장재 모듈의 에너지를 효율적으로 최대 수급하기 위한 BIPV(Building Integrated PV)용 Optimizer의 개발에 대해 기술한다.

  • PDF

BIM을 활용한 컬러모듈 BIPV 건축 설계 최적화 방안 연구 - 서울 지역 실증 일사량 데이터 중심으로 - (A Study on the Optimization of Color Module BIPV Architectural Design Using BIM - Based on the data of Seoul surveyed solar radiation -)

  • 전현우;윤혜경;박서준
    • 한국BIM학회 논문집
    • /
    • 제9권3호
    • /
    • pp.19-29
    • /
    • 2019
  • Currently, BIPV (Building Integrated Photovoltaic) design technology lacks analysis function at the planning stage, and there is a lack of understanding and reliability of BIPV design method and system for building designers. To design and consider various building integrated solar design alternatives, the color of building integrated solar is often monotonous or does not match the design direction of the building. In this study, architectural designers can select various color modules in the planning and design process of the building and analyze the characteristics of color module solar cells and compare and analyze the actual solar radiation and predicted solar radiation in Republic ofKorea Seoul to reduce the confusion of design methods. By building a BIM design integrated system that can prove the quality of the building and analyze the shading analysis and power generation performance architecturally, it can improve the reliability of color module solar cell applicability that can express aesthetics in buildings and the predicted solar power generation capacity of each region. In the initial design stage, based on the empirical data of the BIPV system, it is possible to analyze the power generation performance for each installation angle and installation direction by analyzing the surrounding environment and the installation area, and accurately determine the appropriateness of the design accordingly.

절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조 (Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof)

  • 이은비;박민준;김민섭;신진호;윤성민
    • Current Photovoltaic Research
    • /
    • 제11권2호
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구 (A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades)

  • 강준구;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

지붕재 일체형 태양전지 모듈의 개발에 따른 내구성 평가 (조립식 건축시스템을 중심으로) (A Study on the Development of Roof Integrated PV Module (Focused on the Prefab Building System))

  • 이소미;노지희;이응직
    • KIEAE Journal
    • /
    • 제6권4호
    • /
    • pp.17-24
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. Architecture considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully refelected from the early stage of BIPV module design. Trial product of BIPV module are manufactured and sample construction details for demonstration building are purposed. Therefore, this paper intends to advanced its practical use by proposing how to get integrated PV system which can be applied to prefab building material, and how to apply it.