• 제목/요약/키워드: Building-integrated PV system

검색결과 85건 처리시간 0.03초

주택지붕용 2kWp BIPV시스템의 성능 실험 및 전기 부하 감당에 관한 연구 (The Performance and Energy Saving Effect of a 2kWp Roof-Integrated Photovoltaic System)

  • 이강록;오명택;박경은;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.13-19
    • /
    • 2006
  • The efficiency of building-integrated photovoltaic(BIPV) system is mainly determined by solar radiation and the temperature of PV modules. The performance of BIPV systems is reported to be different from that of conventional PV systems installed in the open-air. This paper presents the relationship of solar radiation and electricity generation from a 2kWp roof-integrated PV system that is applied as building elements on an experimental house, and the energy saving effect of the BIPV system for a typical house. For the performance evaluation of the BIPV system, it produced a regression equation with measured data for winter days. The regression equation showed that a comparison of the measured electricity generation and the predicted electricity generation of the BIPV system were meaningful. It showed that an annual electricity generation of the system appeared to cover around 52% of an annual electricity consumption of a typical domestic house with the floor area of $96m^2$.

발코니형 PV시스템의 최적설계를 위한 어레이 배열 특성 고찰 (A Study on the characteristic of array arrangement for the optimum design of the balcony PV system)

  • 강기환;소정훈;김현일;박경은;유권종;서승직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1678-1680
    • /
    • 2005
  • This paper presents Building Integrated Photovoltaic system of the balcony type which is influenced by conditions such as irradiation, module temperature, shade and array arrangement. When architecture component, trees and cloud shade connecting array in series, total PV array current is reduced. So, before PV system design, a planner have to simulate many situations. And then array should be composed suitable for parallel and series modules. By the results, it is very important to develop optimal design of array considering shade effect for the balcony PV system.

  • PDF

건물통합을 위한 태양에너지 cogeneration panel 특성 분석 연구 (The Performance Assessment Study of Solar Energy Cogeneration panel for Building Integrated System)

  • 김용환;강은철;현명택;이의준
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.35-42
    • /
    • 2006
  • Solar Thermal-Electric Integrated system can be used to generate heat and electricity simultaneously and can improve indoor all qualify. So, it can save heating and electricity cost as it operates at relatively lower temperatures. In this study, one pv module was fixed on a normal wall and a pv module was mounted on a solarwall. And a ventilation fan in the solar energy cogeneration panel was operated from 12:00 to 17:00 hours. Experimental results are recorded and anaysized. The comparison of results show that the temperature of PV on solar energy cogeneration panel was decreased by $7{\sim}9^{\circ}C$ and the electrical output was improved by $2{\sim}3W$ compared with a PV system without solarwall.

비상용 디젤동기발전시스템기반 독립운전 하이브리드에너지시스템 모델 설정 및 시뮬레이션 분석에 관한 연구 (Simulation Analysis and Development of Matlab/Simulink Model for Stand-alone Operation of Emergency Diesel Synchronous Generator-based Hybrid Energy System)

  • 홍원표
    • 조명전기설비학회논문지
    • /
    • 제29권1호
    • /
    • pp.70-79
    • /
    • 2015
  • In this paper, enhanced stand-alone operation and development of Matlab/Simulink model of emergency diesel based hybrid energy system is presented. Simulations based on the remote community or islands were performed for PV-diesel-battery hybrid system. Modeling of PV-diesel-battery integrated system is done to perform under the solar radiation and load conditions on Matlab/Simulink platform. The models of diesel generator unit, battery energy storage system, PV and frequency-power control are developed and simulation studies have been carried out under various conditions using Matlab/Simulink and SimPowerSystem. It is demonstrated that the proposed system can provide reliable and good quality power to the customers in diesel synchronous generator-based hybrid energy systems.

스팬드럴 적용 BIPV의 후면 열 특성에 관한 연구 (A Study on the Thermal Characteristics of BIPV Applied on Curtain Wall Spandrel)

  • 이상길;강태우;장한빈;강기환;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.120-126
    • /
    • 2012
  • BIPV is applied to buildings in various forms. However, there are some aspects of consideration in applying PV systems in buildings, such as attaching methods, PV electrical efficiency, appearance and so on. BIPV can be installed on curtain wall spandrel as finishing material, which may combine with insulation. The thermal characteristic of spandrel with BIPV has rarely been studied; the temperature of air space between PV module and insulation layer affects both the electrical behavior of PV module and the energy load in a building. This paper aims to analyse the temperature variation of the layers in BIPV spandrels. In this paper, the temperature of layers, including the air space and PV module, was measured for three different type of BIPV applications on spandrel. The results show that the temperature of air layer for the spandrel with G/G(2) type BIPV module on October was the highest among other months.

스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구 (Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level)

  • 윤종호;오명환;강기환;이재범
    • 한국태양에너지학회 논문집
    • /
    • 제32권4호
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

발코니형 BIPV시스템의 성능 분석 (Performance Analysis of Balcony BIPV System)

  • 김현일;강기환;소정훈;유권종;박경은;이길송;서승직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.208-209
    • /
    • 2007
  • Photovoltaic(PV) based electricity production is pollution-free at the local as well as the global level, it does not emit greenhouse gases, it dose not dip into finite file resources and it can be easily integrated into the urban environment, close to major consumption needs. So BIPV(Building-Integrated Photovoltaics) system have been increased around the world. This paper presents measuring and analyzing performance of balcony BIPV system which have been installed and monitoring. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. By the results, it is very important to develop optimal design for the balcony PV system.

  • PDF

차양형 태양광발전시스템의 설치 및 운영에 관한 연구 (Installation and Operating with Photovoltaic System of Sunshade Type)

  • 이소미;심헌;이용호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.136-141
    • /
    • 2005
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. So, the purpose of this research is to present how to get PVIB which can be applied building facade and how to apply it. From the basis of these results this study will intend to develop an integrated for optimal design of PV System.

  • PDF

실험을 통한 건물통합형 태양광·열(BIPVT) 시스템의 난방성능 평가 (The Heating Performance Evaluation of Heating System with Building-Integrated Photovoltaic/Thermal Collectors)

  • 정선옥;김진희;김지성;박세현;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.113-119
    • /
    • 2012
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that produce thermal energy as well as electricity. In many studies various water type PVT collectors have been proposed in effort to increase their electrical and thermal efficiency. The aim of this study is to evaluate the heating performance of heating system combined with PVT collectors that on integrated building roof. For this study, the BIPVT system of 1.5kWp was installed at the experimental house, and it was incorporated with its heating system. From the experimental results, the solar fraction of the heating system with BIPVT was 15%. It was also found that was analyzed that the heating energy for the house can be reduced by 47%, as the heat gained from BIPVT system pre-heated the water used for heating system.

The Economic Feasibility of Building-Integrated Photovoltaics System Installed on the Roof of Residential Building - Focused on Comparison with Construction Cost of BAPV System Depend on Roof Finishing Materials

  • Oh, Byung-Chil
    • KIEAE Journal
    • /
    • 제17권1호
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose: This study was on the economic feasibility of BIPV system, focused on comparison with construction cost of BAPV system depend on roof finishing materials, and to suggest basic data on the construction cost. Method: Construction cost of BAPV system was calculated, by selecting asphalt single, flat type roof tile, color steel plate, titanium zinc plate as roof finishing material of residential building and by sum up each cost for roof finishing construction and cost for 3kWp-volumed PV module installation. Also, the economic feasibility was analysed quantitatively by comparing the cost for BIPV system construction, installing same volumed PV module instead of roof finishing materials. Result: 1. By installing BIPV system instead of the roof finishing material, the cost of construction falls ; about 19% in case of the titanium zinc plate, which is the most expensive, and about 11% in case of the color steel plate. 2. Reducing amount of the construction cost gets larger because of installing BIPV module instead of the roof finishing material, as the construction cost for roof finishing material gets higher ; therefore, it is more economical than BAPV system in terms of whole cost of construction.