• Title/Summary/Keyword: Building shapes

Search Result 397, Processing Time 0.027 seconds

Aerodynamic behavior of supertall buildings with three-fold rotational symmetric plan shapes: A case study

  • Rafizadeh, Hamidreza;Alaghmandan, Matin;Tabasi, Saba Fattahi;Banihashemi, Saeed
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.407-419
    • /
    • 2022
  • Many factors should be considered by architects and designers for designing a tall building. Wind load is one of these important factors that govern the design of tall building structures and can become a serious challenge when buildings tend to be built very tall and slender. On the other hand, through the initial stages of a design process, choosing the design geometry greatly affects the wind-induced forces on a tall building. With this respect, geometric shapes with 3-fold rotational symmetry are one of the applied plan shapes in tall buildings. This study, therefore, aims to investigate the aerodynamic characteristics of 8 different geometrical shapes using Computational Fluid Dynamics (CFD) by measuring the drag and lift forces. A case study approach was conducted in which different building shape models have the same total gross area and the same height of 300 meters. The simulation was an incompressible transient flow that ran 1700 timesteps (85 seconds on the real-time scale). The results show a great difference between wind-induced force performance of buildings with different plan shapes. Generally, it is stated that the shapes with the same area, but with smaller perimeters, are better choices for reducing the drag force on buildings. Applying the lift force, the results show that the buildings with plan shapes that have rounded corners act better in crosswind flow while, those with sharp corners induce larger forces in the same direction. This study delivers more analytical understanding of building shapes and their behavior against the wind force through the parametric modelling.

EMD-based output-only identification of mode shapes of linear structures

  • Ramezani, Soheil;Bahar, Omid
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.919-935
    • /
    • 2015
  • The Hilbert-Huang transform (HHT) consists of empirical mode decomposition (EMD) and Hilbert spectral analysis. EMD has been successfully applied for identification of mode shapes of structures based on input-output approaches. This paper aims to extend application of EMD for output-only identification of mode shapes of linear structures. In this regard, a new simple and efficient method based on band-pass filtering and EMD is proposed. Having rather accurate estimates of modal frequencies from measured responses, the proposed method is capable to extract the corresponding mode shapes. In order to evaluate the accuracy and performance of the proposed identification method, two case studies are considered. In the first case, the performance of the method is validated through the analysis of simulated responses obtained from an analytical structural model with known dynamical properties. The low-amplitude responses recorded from the UCLA Factor Building during the 2004 Parkfield earthquake are used in the second case to identify the first three mode shapes of the building in three different directions. The results demonstrate the remarkable ability of the proposed method in correct estimation of mode shapes of the linear structures based on rather accurate modal frequencies.

A Study on the Analysis of Energy Consumption Patterns According to the Building Shapes with the Same Volume (동일 체적의 건물 형상에 따른 에너지 소비량 패턴에 대한 분석 연구)

  • Choi, Won-Ki;Kim, Heon-Joong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • This study was focused on the establishment of a fundamental DB(database) that is available in the building design process, so we performed the simulation analysis about the energy consumption on the various same volume buildings. Because energy consumption in building is affected by the exterior surface area, the ratio of long/short length in surface and the adjacent internal surface area etc.. For these purpose, we assumed the unit module and made a constructable 16 model buildings which are composed of the 16 unit modules. Then we analyzed the simulation using the TRNSYS 16 and the Seoul weather data. In results, energy consumption in building is more reduced that in case of the smaller exterior surface area, the lower stories building and the larger adjacent surface area etc.. Further study is to be required the sensitivity analysis on the various weather conditions, building shapes and window area etc..

Prediction of Urban Development and Cityscape with a Simulation Model (시뮬레이션 모형을 이용한 도시 개발형태 및 경관의 변화 예측)

  • 이인성;김충식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.106-113
    • /
    • 2004
  • The shapes(mass) of buildings are determined by many interrelated factors, such as planning and building regulations, the size and shape of building parcels, and adjoining road conditions. Understanding the effects of the determinants on the building shapes is not a simple task because of the multiplicity and complex interrelationships of the determinants. This study developed a prototype of three dimensional computer model that can simulates the determination process of building shape using GIS and CAD techniques. A commercial block in the south of Seoul was selected for the case study. Several methods of building height control were applied, and their effects on the cityscape were evaluated. The results shows that the three dimensional computer modelling offers an effective means for evaluating the effects of planning and building regulations. The implication of the case study and future research directions were discussed.

High-frequency force balance technique for tall buildings: a critical review and some new insights

  • Chen, Xinzhong;Kwon, Dae-Kun;Kareem, Ahsan
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.391-422
    • /
    • 2014
  • The high frequency force balance (HFFB) technique provides convenient measurements of integrated forces on rigid building models in terms of base bending moments and torque and/or base shear forces. These base moments or forces are then used to approximately estimate the generalized forces of building fundamental modes with mode shape corrections. This paper presents an analysis framework for coupled dynamic response of tall buildings with HFFB technique. The empirical mode shape corrections for generalized forces with coupled mode shapes are validated using measurements of synchronous pressures on a square building surface from a wind tunnel. An alternative approach for estimating the mean and background response components directly using HFFB measurements without mode shape corrections is introduced with a discussion on higher mode contributions. The uncertainty in the mode shape corrections and its influence on predicted responses of buildings with both uncoupled and coupled modal shapes are examined. Furthermore, this paper presents a comparison of aerodynamic base moment spectra with available data sets for various tall building configurations. Finally, e-technology aspects in conjunction with HFFB technique such as web-based on-line analysis framework for buildings with uncoupled mode shapes used in NALD (NatHaz Aerodynamic Loads Database) is discussed, which facilitates the use of HFFB data for preliminary design stages of tall buildings subject to wind loads.

Investigation into the development of automatic VLM-$_{ST}$ process utilizing two step cutting and two reference shapes (2단계 절단과 두개의 적층 기준형상을 이용한 전자동 VLM-$_{ST}$ 공정 개발에 관한 연구)

  • 안동규;이상호;김효찬;양동열;박승교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.62-65
    • /
    • 2003
  • VLM-ST process requires an additional human interaction due to the manual stacking and bonding. Hence, building time, building cost and the part quality are dependent on the skill of labor. In this present work, a novel rapid prototyping (RP) process, as an automatic VLM-ST (VLM-STA), has been proposed to improve building efficiency of VLM-ST process and reliability of products. The apparatus of VLM-STA is designed to embody the process. Several characteristics of the proposed process and the apparatus are discussed. In order to examine the efficiency and the applicability of the proposed process, various three-dimensional shapes, such as a piston and a human head shape, are fabricated on the apparatus.

  • PDF

TECHNIQUE OF EXTRACTING BUILDING BOUNDARIES FROM SEGMENTED ALS POINTS

  • Lee, Jeong-Ho;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.141-144
    • /
    • 2008
  • Many studies have been conducted on extracting buildings from ALS(Airborne Laser Scanning) data. After segmentation or classification of building points, additional steps such as generalization is required to get straight boundary lines that better approximate the real ones. In much research, orthogonal constraints are used to improve accuracies and qualities. All the lines of the building boundaries are assumed to be either parallel or perpendicular mutually. However, this assumption is not valid in many cases and more complex shapes of buildings have been increased. A new algorithm is presented that is applicable to various complex buildings. It consists of three steps of boundary tracing, grouping, and regularization. The performance of our approach was evaluated by applying the algorithm to some buildings and the results showed that our proposed method has good potential for extracting building boundaries of various shapes.

  • PDF

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

Spectral density functions of wind pressures on various low building roof geometries

  • Kumar, K. Suresh;Stathopoulos, T.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.203-223
    • /
    • 1998
  • This paper describes in detail the features of an extensive study on Spectral Density Functions (SDF's) of wind pressures acting on several low building roof geometries carried out in a boundary layer wind tunnel. Various spectral characteristics of wind pressures on roofs with emphasis on derivation of suitable analytical representation of spectra and determination of characteristic spectral shapes are shown. Standard spectral shapes associated with various zones of each roof and their parameters are provided. The established spectral parameters can be used to generate synthetic spectra adequate for the simulation of wind pressure fluctuations on building surfaces in a generic fashion.

Extraction and Regularization of Various Building Boundaries with Complex Shapes Utilizing Distribution Characteristics of Airborne LIDAR Points

  • Lee, Jeong-Ho;Han, Soo-Hee;Byun, Young-Gi;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.547-557
    • /
    • 2011
  • This study presents an approach for extracting boundaries of various buildings, which have concave boundaries, inner yards, non-right-angled corners, and nonlinear edges. The approach comprises four steps: building point segmentation, boundary tracing, boundary grouping, and regularization. In the second and third steps, conventional algorithms are improved for more accurate boundary extraction, and in the final step, a new algorithm is presented to extract nonlinear edges. The unique characteristics of airborne light detection and ranging (LIDAR) data are considered in some steps. The performance and practicality of the presented algorithm were evaluated for buildings of various shapes, and the average omission and commission error of building polygon areas were 0.038 and 0.033, respectively.