• Title/Summary/Keyword: Building shape

Search Result 1,189, Processing Time 0.027 seconds

A Basic Study on Analysis of the Impact of Building Shape on Safety Accidents (건물의 형상이 안전사고에 미치는 영향분석에 관한 기초연구)

  • Son, Seunghyun;Kim, Ji-Myung;Ahn, Sungjin;Han, Bumjin;Na, Youngju;Kim, Taehui
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.27-28
    • /
    • 2022
  • There is a limit to preventing various types of safety accidents in advance at construction sites. Even for buildings of the same total floor area, it is expected that the more complex the building shape or the higher the number of floors, the higher the probability of a safety accident. Therefore, it is necessary to analyze the effect of the shape of a building on safety accidents using safety accident data generated during actual construction. The purpose of this study is to analyze the impact of building shape on safety accidents. As a result, the R2 value of shape factor and safety accident was 0.901, and the R2 value of construction difficulty and safety accident was 0.944. In the future, the results of this study will be used as basic data for improving safety management related systems.

  • PDF

A study on the spatial relations and shape rules in architecture shown the Froebel's categories of building gifts (프뢰벨 은물의 형식범주에 나타난 건축공간관계 및 형태구축에 관한 연구)

  • 황태주
    • Korean Institute of Interior Design Journal
    • /
    • no.31
    • /
    • pp.12-18
    • /
    • 2002
  • This study was performed to construct the spatial systems and shape grammars in architecture based on Froebel's educational idea and building gifts. Especially, it studies on the geometrical principles of Froebel's building gifts and it's types, and then illustrates applied examples about design vocabularies, spatial relations and shape rules of the spatial systems and shape grammars in architecture. The conclusions of this study that starts these purpose are as follows. First, Froebel's educational theory is based on principles and rules which are perceived through the observation of nature, and Froebel's kindergarten method consists of geometrical building gifts and categories of geometrical forms. Second, the characteristics of Froebel's building gifts are mathematical size, proportion, symmetry and the rules of spatial relation. Third, the development to the construction of spatial systems and shape grammars in architecture focus on the vocabularies of architectural elements, and Froebel's building gifts are used for illustration of examples in these formula.

Evaluation of mode-shape linearization for HFBB analysis of real tall buildings

  • Tse, K.T.;Yu, X.J.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-441
    • /
    • 2014
  • The high frequency base balance (HFBB) technique is a convenient and relatively fast wind tunnel testing technique for predicting wind-induced forces for tall building design. While modern tall building design has seen a number architecturally remarkable buildings constructed recently, the characteristics of those buildings are significantly different to those that were common when the HFBB technique was originally developed. In particular, the prediction of generalized forces for buildings with 3-dimensional mode shapes has a number of inherent uncertainties and challenges that need to be overcome to accurately predict building loads and responses. As an alternative to the more conventional application of general mode shape correction factors, an analysis methodology, referred to as the linear-mode-shape (LMS) method, has been recently developed to allow better estimates of the generalized forces by establishing a new set of centers at which the translational mode shapes are linear. The LMS method was initially evaluated and compared with the methods using mode shape correction factors for a rectangular building, which was wind tunnel tested in isolation in an open terrain for five incident wind angles at $22.5^{\circ}$ increments from $0^{\circ}$ to $90^{\circ}$. The results demonstrated that the LMS method provides more accurate predictions of the wind-induced loads and building responses than the application of mode shape correction factors. The LMS method was subsequently applied to a tall building project in Hong Kong. The building considered in the current study is located in a heavily developed business district and surrounded by tall buildings and mixed terrain. The HFBB results validated the versatility of the LMS method for the structural design of an actual tall building subjected to the varied wind characteristics caused by the surroundings. In comparison, the application of mode shape correction factors in the HFBB analysis did not directly take into account the influence of the site specific characteristics on the actual wind loads, hence their estimates of the building responses have a higher variability.

Shape Effects on Aerodynamic and Pedestrian-level Wind Characteristics and Optimization for Tall and Super-Tall Building Design

  • Kim, Yong Chul;Xu, Xiaoda;Yang, Qingshan;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.235-253
    • /
    • 2019
  • This paper reviews shape optimization studies for tall and super-tall building design. Firstly, shape effects on aerodynamic and response characteristics are introduced and discussed. Effects of various configurations such as corner modifications, taper, setback, openings, and twists are examined. Comprehensive comparative studies on various configurations including polygon building models, and composite type building models such as corner-cut and taper, corner-cut and taper and helical, and so on, are also discussed under the conditions of the same height and volume. Aerodynamic characteristics are improved by increasing the twist angle of helical buildings and increasing the number of sides of polygon buildings, but a twist angle of $180^{\circ}$ and a number of sides of 5 (pentagon) seem to be enough. The majority of examined configurations show better aerodynamic characteristics than straight-square. In particular, composite type buildings and helical polygon buildings show significant improvement. Next, shape effects on pedestrian-level wind characteristics around tall and super-tall buildings are introduced and discussed. Corner modification buildings show significant reductions in speed-up areas. On the other hand, setback and tapered models with wider projected widths near the ground show adverse effects on pedestrian-level wind characteristics.

Estimation of wind pressure coefficients on multi-building configurations using data-driven approach

  • Konka, Shruti;Govindray, Shanbhag Rahul;Rajasekharan, Sabareesh Geetha;Rao, Paturu Neelakanteswara
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.127-142
    • /
    • 2021
  • Wind load acting on a standalone structure is different from that acting on a similar structure which is surrounded by other structures in close proximity. The presence of other structures in the surrounding can change the wind flow regime around the principal structure and thus causing variation in wind loads compared to a standalone case. This variation on wind loads termed as interference effect depends on several factors like terrain category, geometry of the structure, orientation, wind incident angle, interfering distances etc., In the present study, a three building configuration is considered and the mean pressure coefficients on each face of principle building are determined in presence of two interfering buildings. Generally, wind loads on interfering buildings are determined from wind tunnel experiments. Computational fluid dynamic studies are being increasingly used to determine the wind loads recently. Whereas, wind tunnel tests are very expensive, the CFD simulation requires high computational cost and time. In this scenario, Artificial Neural Network (ANN) technique and Support Vector Regression (SVR) can be explored as alternative tools to study wind loads on structures. The present study uses these data-driven approaches to predict mean pressure coefficients on each face of principle building. Three typical arrangements of three building configuration viz. L shape, V shape and mirror of L shape arrangement are considered with varying interfering distances and wind incidence angles. Mean pressure coefficients (Cp mean) are predicted for 45 degrees wind incidence angle through ANN and SVR. Further, the critical faces of principal building, critical interfering distances and building arrangement which are more prone to wind loads are identified through this study. Among three types of building arrangements considered, a maximum of 3.9 times reduction in Cp mean values are noticed under Case B (V shape) building arrangement with 2.5B interfering distance. Effect of interfering distance and building arrangement on suction pressure on building faces has also been studied. Accordingly, Case C (mirror of L shape) building arrangement at a wind angle of 45º shows less suction pressure. Through this study, it was also observed that the increase of interfering distance may increase the suction pressure for all the cases of building configurations considered.

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

A Study on Analysis of Air Flow for Wind Power System by Shape of Super High-rise building (초고층건물에서의 풍력발전 적용을 위한 건물형태별 기류분석)

  • Jang, Ho-Jin;Lee, Dong-Yun;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.42-47
    • /
    • 2011
  • This study aims to choose installation location of wind power system and analyze influence factors of wind power system by shape of super high-raise building by using CFD simulation. As a result of this study, wind power system is more applicable to streamlined building than normal building. Round openings are seemed to be the most efficient shape for building integrated wind power system in types applying venturi effect. Safety and vibration should be considered in the case of application of wind power system between the buildings.

  • PDF

Assessment of Lateral Deformation Shape for High-rise Building Structures (고층건물의 수평변형형상에 대한 평가)

  • 서현주
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.36-43
    • /
    • 1998
  • The purpose of study is to propose numerical assessment methods of lateral deformation shape under lateral loads for regular high-rise buildings. The normalized 1st mode shape is used to assess lateral deformation shape. The assessment method are mass participation factor, representative value by RMS, the mean value, median of the nomalized 1st mode shape. These methods are able to know a fundamental lateral deformation shape of the building and effects of interactive systems numerically. Generally the characteristics of normalized 1st mode shape for various models coincide with numerical assessment results.

  • PDF

Prediction of Urban Development and Cityscape with a Simulation Model (시뮬레이션 모형을 이용한 도시 개발형태 및 경관의 변화 예측)

  • 이인성;김충식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.106-113
    • /
    • 2004
  • The shapes(mass) of buildings are determined by many interrelated factors, such as planning and building regulations, the size and shape of building parcels, and adjoining road conditions. Understanding the effects of the determinants on the building shapes is not a simple task because of the multiplicity and complex interrelationships of the determinants. This study developed a prototype of three dimensional computer model that can simulates the determination process of building shape using GIS and CAD techniques. A commercial block in the south of Seoul was selected for the case study. Several methods of building height control were applied, and their effects on the cityscape were evaluated. The results shows that the three dimensional computer modelling offers an effective means for evaluating the effects of planning and building regulations. The implication of the case study and future research directions were discussed.

Optimization Method of Building Energy Performance and Construction Cost Using Kuhn-Tucker Conditions (쿤-터커 조건을 이용한 건물의 에너지성능과 비용 최적화방법)

  • Won, Jong-Seo;Koo, Jae-Oh
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 2003
  • The purpose of this study is to present rational methods of multi-criteria optimization of the shape of energy saving buildings. The object is to determine the optimum dimension of the shape of a building, based on the following criteria: minimum building costs (including the cost of materials and construction) and yearly heating costs. Mathematical model described heat losses and gains in a building during the heating season. It takes into consideration heat losses through wall, roof, floor and windows. Particular attention was paid to have a more detailed description of heat gains due to solar radiation. On the assumption that shape of building is rectangle in order to solve the problem, the proportions of wall length and building height are determined by using non-linear programing methods(Kuhn-Tucker Conditions). The results constitute information for designers on the optimum proportions of wall lengths, height, and the ratios of window to wall areas for energy saving buildings.