• Title/Summary/Keyword: Building energy performance assessment

Search Result 105, Processing Time 0.025 seconds

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

Seismic resilience evaluation of RC-MRFs equipped with passive damping devices

  • Kamaludin, Puteri Nihal Che;Kassem, Moustafa Moufid;Farsangi, Ehsan Noroozinejad;Nazri, Fadzli Mohamed;Yamaguchi, Eiki
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.391-405
    • /
    • 2020
  • The use of passive energy dissipation devices has been widely used in the construction industry to minimize the probability of damage occurred under intense ground motion. In this study, collapse margin ratio (CMR) and fragility curves are the main parameters in the assessment to characterize the collapse safety of the structures. The assessment is done on three types of RC frame structures, incorporating three types of dampers, viscoelastic, friction, and BRB dampers. The Incremental dynamic analyses (IDA) were performed by simulating an array of 20 strong ground motion (SGM) records considering both far-field and near-field seismic scenarios that were followed by fragility curves. With respect to far-field ground motion records, the CMR values of the selected frames indicate to be higher and reachable to safety margin more than those under near-field ground motion records that introduce a high devastating impact on the structures compared to far-field excitations. This implies that the near field impact affects the ground movements at the site by attenuation the direction and causing high-frequency filtration. Besides that, the results show that the viscoelastic damper gives better performance for the structures in terms of reducing the damages compared to the other energy dissipation devices during earthquakes.

The Condensation Risk Assessment of Vacuum Multi-Layer Glass and Triple Glass using the Temperature Difference Ratio (진공복층 유리와 3중 유리의 결로 위험성 평가)

  • Won, Jong-Seo;Nam, Jung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.573-577
    • /
    • 2013
  • An external window directly affects the energy performance of its building. In modern well-insulated buildings, U-values for walls of 0.36 $W/m^2K$ or even lower can be realized. In such buildings, glazing with typical U-value of 2.1 $W/m^2K$ or higher creates thermal weak spots on the facade. The performance of the existing triple glass window has been limited to energy savings and condensation prevention. In this study, the performance of condensation prevention of a vacuum multi-layer glass was analyzed. The final conclusion through mock-up experiments is as follows. The surface temperature of the vacuum multi-layer glass was $2^{\circ}C$ higher, and the temperature difference ratio (TDR) was 0.07 lower, than the corresponding values of the triple glass.

Generation of Weather Data for Future Climate Change for South Korea using PRECIS (PRECIS를 이용한 우리나라 기후변화 기상자료의 생성)

  • Lee, Kwan-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.54-58
    • /
    • 2011
  • According to the Fourth Assessment Report of the Inter governmental Panel on Climate Change(IPCC), climate change is already in progress around the world, and it is necessary to start mitigation and adaptation strategies for buildings in order to minimize adverse impacts. It is likely that the South Korea will experience milder winters and hotter and more extreme summers. Those changes will impact on building performance, particularly with regard to cooling and ventilation, with implications for the quality of the indoor environment, energy consumption and carbon emissions. This study generate weather data for future climate change for use in impacts studies using PRECIS (Providing REgional Climate for Impacts Studies). These scenarios and RCM (Regional Climate Model) are provided high-resolution climate-change predictions for a region generally consistent with the continental-scale climate changes predicted in the GCM (Global Climate Model).

  • PDF

A Study on Analysis Method for Performance Evaluation of Double-leaf facade of Office Building (업무용 건물의 이중외피 성능평가를 위한 해석기법의 고찰 - 이중외피 설계안의 에너지 저감 성능 및 환기성능을 중심으로 -)

  • Chung, Hwan-Kyo;Chung, Kwang-Seop;Lee, Yong-Jun;Shin, Seung-Chul;Kim, Young-Il
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.168-178
    • /
    • 2012
  • The objective of this study is applied to office buildings to evaluate quantitative evaluation method about performance of double-skin at design stage to establish the basis for the purpose of evaluation performance. Select the evaluation building about design plan for applying the double-skin using the dynamic heat load analysis program the annual heating and cooling load of before and after the double-skin. Using CFD to analyze wind factor and applied ventilation for realistic results. Effects of double-skin to apply, and control techniques that can be done more realistically proposed through to set and control for shade control mode of ventilator and inside cavity wall of double-skin. Apply for the building the double-skin due to interpretation of the annual heating and cooling loads applied to interpret the quantitative effect confirmed the possibility. According to the form of a double skin was confirmed cavity environmental changes.

Assessment of Distributed and Dynamic Potential of Photovoltaic Systems in Urban Areas (태양광 발전 시스템의 시공간적 잠재성 평가 소프트웨어 개발)

  • Choi, Yosoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • This study presents a new method for coupling ArcGIS (popular GIS software) with TRaNsient SYstems Simulation (TRNSYS, reference software for researchers and engineers around the world) to use capabilities of the 4 and 5-parameter PV array performance models within the ArcGIS environment. Using the validated and industry-proven solar energy simulation models implemented in TRNSYS and other built-in ArcGIS functionalities, dynamic characteristics of distributed PV potential in terms of hourly, daily or monthly power outputs can be investigated with considerations of diverse options in selecting and mounting PV panels. In addition, the proposed method allows users to complete entire procedures in a single framework (i.e., a preliminary site survey using 3D building models, shading analyses to investigate usable rooftop areas with considerations of different sizes and shapes of buildings, dynamic energy simulation to examine the performances of various PV systems, visualization of the simulation results to understand spatially and temporally distributed patterns of PV potential). Therefore tedious tasks for data conversion among multiple softwares can be significantly reduced or eliminated. While the programming environment of TRNSYS is proprietary, the redistributable executable, simulation kernel and simulation engine of TRNSYS can be freely distributed to end-users. Therefore, GIS users who do not have a license of TRNSYS can also use the functionalities of solar energy simulation models within ArcGIS.

  • PDF

Effects of Various Factors on the Energy Consumption of Korean-Style Apartment Houses (한국형 아파트의 냉난방 에너지에 미치는 제 인자의 영향)

  • 유호선;현석균;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.972-980
    • /
    • 2002
  • This work is aimed at estimating the effects of various factors on the energy consumption of Korean-style apartment houses using TRNSYS. The factors considered here include the nominal size of floor area, type of remodeling, azimuth, sidewall insulation, and window type. Based on some assumptions, an actual apartment house is simplified into a model that is used for thermal load calculations. The simplified model is validated by showing a good agreement with the actual one in the predicted result. Remodeling balconies into unconditioned buffer spaces yields a favorable thermal performance in comparison with the original type regardless of the nominal size. Incorporating balconies into a conditioned indoor space leads to sharp increases in thermal loads, which must be avoided in view of energy conservation as well as structural problem. A quantitative assessment on the azimuthal effect indicates that the heating energy can be saved up to 16% by taking the south or southeast direction. Reduction in the heating load with enhancing the sidewall insulation is gradual, so that a cost-effectiveness analysis may be needed when amending the regulations concerned. Glazing appears to significantly affect the heat transfer through window. A typical case illustrates that the heating load is decreased about 25% by simply adopting triple glazing instead of double glazing.

Damage assessment of buildings after 24 January 2020 Elazığ-Sivrice earthquake

  • Nemutlu, Omer Faruk;Balun, Bilal;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2021
  • The majority of Turkey's geography is at risk of earthquakes. Within the borders of Turkey, including the two major active faults contain the North-Eastern and Eastern Anatolia, earthquake, threatening the safety of life and property. On January 24, 2020, an earthquake of magnitude 6.8 occurred at 8:55 p.m. local time. According to the data obtained from the stations in the region, peak ground acceleration in the east-west direction was measured as 0.292 g from the 2308 coded station in Sivrice. It is thought that the earthquake with a magnitude of Mw 6.8 was developed on the Sivrice-Puturge segment of the Eastern Anatolian Fault, which is a left lateral strike slip fault, and the tear developed in an area of 50-55 km. Aftershocks ranging from 0.8 to 5.1 Mw occurred following the main shock on the Eastern Anatolian Fault. The earthquake caused severe structural damages in Elazığ and neighboring provinces. As a result of the field investigations carried out in this study, significant damage levels were observed in the buildings since it did not meet the criteria in the earthquake codes. Within the study's scope, the structural damage cases in reinforced concrete and masonry structures were investigated. Many structural deficiencies and mistakes such as non-ductile details, poor concrete quality, short columns, strong beams-weak columns mechanism, large and heavy overhangs, masonry building damages and inadequate reinforcement arrangements were observed. Requirements of seismic codes are discussed and compared with observed earthquake damage.

Development of Impact Table and optimum combination dedication module for green-remodeling advance business value assessment

  • Choi, Jun-Woo;Kim, Gyoung-Rok;Ko, Jung-Lim;Shin, Jee-Woong;Lee, Keon-Ho
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: In case of existing building, A lot of attempts are being made like changing thermal system or using high efficiency products to decrease energy load and increase energy efficiency. However, (1) Absence of systemed database of green-remodeling technology and products. (2) Absence of comparative analysis system and qualitative/quantitative evaluation method of energy performance and energy reduction cost. (3) Existing remodeling was very hard to access for non-experts. So, in this paper, the authors developed data base for green-remodeling(Impact Table A, Impact Table B) and optimum combination dedication tool for user convenience. Accordingly, purpose of this paper validate usefulness of Impact Table and optimum alternative dedication tool. Method: For validate the usefulness of Impact Table and optimum combination dedication tool, the authors selected five test model office buildings. Next, through research investigation, the authors diagnosed the present state of buildings. In base of diagnosis results, select technologies for remodeling by qualitative comparison (Impact Table A). Next, evaluate quantitative price and performance technologies that selected in Impact Table A (Impact Table B). Lastly, through final evaluation of Impact Taba A and Impact Table B, determine the direction of the green-remodeling. Result: Impact Table and optimum combination dedication tool can use relative indicator for green-remodeling, especially through ROI by detail field.

Fragility-based performance evaluation of mid-rise reinforced concrete frames in near field and far field earthquakes

  • Ansari, Mokhtar;Safiey, Amir;Abbasi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.751-763
    • /
    • 2020
  • Available records of recent earthquakes show that near-field earthquakes have different characteristics than far-field earthquakes. In general, most of these unique characteristics of near-fault records can be attributed to their forward directivity. This phenomenon causes the records of ground motion normal to the fault to entail pulses with long periods in the velocity time history. The energy of the earthquake is almost accumulated in these pulses causing large displacements and, accordingly, severe damages in the building. Damage to structures caused by past earthquakes raises the need to assess the chance of future earthquake damage. There are a variety of methods to evaluate building seismic vulnerabilities with different computational cost and accuracy. In the meantime, fragility curves, which defines the possibility of structural damage as a function of ground motion characteristics and design parameters, are more common. These curves express the percentage of probability that the structural response will exceed the allowable performance limit at different seismic intensities. This study aims to obtain the fragility curve for low- and mid-rise structures of reinforced concrete moment frames by incremental dynamic analysis (IDA). These frames were exposed to an ensemble of 18 ground motions (nine records near-faults and nine records far-faults). Finally, after the analysis, their fragility curves are obtained using the limit states provided by HAZUS-MH 2.1. The result shows the near-fault earthquakes can drastically influence the fragility curves of the 6-story building while it has a minimal impact on those of the 3-story building.