• Title/Summary/Keyword: Building energy demand

Search Result 342, Processing Time 0.026 seconds

Optimal Operational Planning of 1 kW Household PEMFC System (가정용 PEMFC 운전 최적 설계)

  • Kim, Ki-Young;Seo, Seok-Ho;Oh, Si-Doek;Kwak, Ho-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.113-116
    • /
    • 2007
  • The fuel cell which converts directly chemical energy of fuel into electric energy has higher efficiency than the conventional power generation which involves several additional processes. Especially, polymer electrolyte membrane fuel cell (PEMFC) of which the electrolyte is a thin proton conductive polymer membrane is affordable for portable power applications and small-scale distributed power generation including household and small building. It is very important to not only increase the efficiency of FC itself but determine the optimal operation mode. The optimal operational planning of lkW household PEMFC system based on the daily electricity and heat demand patterns was performed. The estimated economic gain was up to 20% by adoption of PEMFC system.

  • PDF

Development of an Energy Management Algorithm for Smart Energy House (스마트에너지하우스 구현을 위한 에너지 수요관리 알고리즘의 개발)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.515-524
    • /
    • 2010
  • Recently, many actions are taking to accelerate progress toward social consensus and implementation of Smart Grid. Smart Grid refers to a evolution of the electricity supply infrastructure that monitors, protects, and intelligently optimize the operation of the interconnected elements including various type of generators, power grid, building/home automation system and end-use consumers. The most distinguished element will be Advanced Metering Infrastructure (AMI) that will be installed to every end-use consumer's home or building and optimize the energy consumption of the end-use consumer. The key function of AMI is energy management capability that coordinates and optimally controls the various loads according to the operating condition and environments. In this study, we figure out the basic function of AMI in Smart Energy House that can be defined as a model house implementing in Smart Grid. This paper proposes the energy management algorithm that will be implemented in AMI at Smart Energy House. The paper also show how energy saving in Smart Energy House can be achieved applying the proposed algorithm to an actual house model that has mainly lighting, air-conditioning, TV loads.

A Theoretical Study for Stack Effect driven Natural Ventilation System in High-rise Building (고층건물에서 연돌효과를 활용한 자연환기시스템 설계를 위한 이론적 고찰)

  • Yoon, Sung-Min;Seo, Jung-Min;Kim, Yang-Soo;Lee, Joong-Hoon;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.123-129
    • /
    • 2009
  • In these days, the green building movement caused by the energy crisis is increasing, passive design is getting mere and more attention as it provides many possibilities for energy conservation. Moreover, with the increasing social intention for healthy life, the demand for indoor air Quality is increasing in Korea. As result, the ventilation system which can provide the sound outdoor air constantly has been obliged in Korea. So, the hybrid system which using natural power and mechanical power and makes up for the shortage of mechanical and natural ventilation attracts people's attention in Korea. As a hybrid ventilation system, in this study, the stack effect driven hybrid ventilation system in high-rise residential building will be suggested. And in this paper, the theoretical review for hybrid ventilation system suggested in this study will be addressed. Especially, the characteristics of pressure distribution and airflow caused by stack effect in high-rise residential building and the possibility of natural ventilation as results of stack effect will be described.

  • PDF

High-Rise Urban Form and Environmental Performance - An Overview on Integrated Approaches to Urban Design for a Sustainable High-Rise Urban Future

  • Yang, Feng
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.87-94
    • /
    • 2016
  • High-rise as a building typology is gaining popularity in Asian mega-cities, due to its advantages in increasing volumetric density with limited land resources. Numerous factors contribute to the formation of high-rise urban form, from economical and institutional, environmental to socio-political. Environmental concerns over the impact of rapid urbanization in developing economies demand new thought on the link between urban environment and urban form. Outdoor and indoor climate, pedestrian comfort, and building energy consumption are all related to and impacted by urban form and building morphology. There are many studies and practices on designing individual "green" high-rise buildings, but far fewer studies on designing high-rise building clusters from the perspective of environmental performance optimization.. This paper focuses on the environmental perspective, and its correlation with the evolution of the high-rise urban form. Previous studies on urban morphology in terms of environmental and energy performance are reviewed. Studies on "parameterizing" urban morphology to estimate its environmental performance are reviewed, and the possible urban design implications of the study are demonstrated in by the author, by way of a microclimate map of the iconic Shanghai Xiao Lujiazui CBD. The study formulates the best-practice design guidelines for creating walkable and comfortable outdoor space in a high-rise urban setting, including proper sizing of street blocks and building footprint, provision of shading, and facilitating urban ventilation.

The Energy Analysis and Evaluation of the NEO-Hanok

  • Han, Sang Hee;Park, So Yeon;Park, Hyo Soon
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.77-86
    • /
    • 2014
  • Plenty of efforts have been made in the traditional architecture of Korea, Hanok, to develop various elements such as restoration, the introduction of new design, and energy-saving while systemic setups on standard and evaluation of eco-friendly energy design of Hanok are lacking. If we evaluate energy performance based on current standards without reflecting unique features of Hanok on the system, Hanok will be included in the very low grade among the residential buildings being included in the approval system of eco-friendly architecture or the unique features will be modified and the burden of increased construction cost. Therefore, this study is to prepare the basic reference for the introductory evaluation system by evaluating the energy performance level of NEO-Hanok based on the current building energy rating system. The result for NEO-Hanok based on the building energy rating system, we propose the rating standard with scorecard elements of NEO-Hanok by considering the necessity of identity and standard for NEO-Hanok. As a result of infiltration test to check the tightness, it was measured as 10.81 times/h (50 ACH). As we switch from the main insulation for the wall from the glass wool 64k(0.035W/mk) to rigid polyurethane foam first class first unit (0.024W/mk), the result was slightly increased from the first demand quantity rating yield $249.8kWh/m^2{\cdot}yr$ to $235.0kWh/m^2{\cdot}yr$. Current certificate system is focused more on the heating load than the cooling load, it is disadvantageous for Hanok, which has less cooling energy consumption in summer. The rating result from the target building study is level 4.

A Strategies to Improve the Natural Ventilation Performance at Underground Parking Lot in Multi-Residential Buildings (공동주택 지하주차장의 자연환기성능 향상방안에 관한 연구)

  • Seo, Jung-Min;Lee, Joong-Hoon;Song, Jong-Eui;Jung, Jung-Hwa;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2011
  • Energy efficiency and indoor air quality have become main issue to develop healthy and sustainable building in these days. As an effort to reduce the energy consumption in multi-residential building, many attempts as like passive design strategies and renewable energy as well as active control method are tried. However, underground parking lot in multi-residential building seldom adopt the sustainable strategies and only mechanical system is installed as usual. Moreover, the mechanical system installed in underground parking lot is rarely operated due to the electric demand for operation after completion. In this study, as an energy efficient measure, natural ventilation system using stack effect as a driving force for underground parking lot will be proposed and the performance of the suggested system will be analyzed by simulation method.

A Study on the optimized Performance Designing of the Window of the Apartment based on the Annual Energy Demand Analysis according to the Azimuth Angle applying the Solar Heat Gain Coefficient of the Window (창호에 SHGC를 반영한 공동주택의 방위각별 에너지 효율성 평가를 통한 합리적인 창호 계획 방안 연구)

  • Lee, Jang-bum
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.25-34
    • /
    • 2019
  • It is important to design windows in a reasonable way considering the performance characteristics of the elements of the window rather than just to increase the thermal energy performance of the window. In this study, the Heat-transfer Coefficient as insulation performance of the windows and together with the grade of the glass's SHGC (Solar Heat Gain Coefficient) were analyzed to relate to the energy efficiency performance of the building by azimuth angle. Based on this basic study, the Heat-transfer Coefficient of windows and the SHGC rating of glass were applied to the unit plan of apartment building, and the Heating and Cooling Demand were analyzed by azimuth angle. Apartment plan types were divided into 2 types of Non-extension and extension of balcony. The designPH analysis data derived from the variant of the Heat-transfer Coefficient and SHGC, were put into PHPP(Passive House Planning Package) to analyze precisely the energy efficiency(Heating and Cooling Demands) of the building by azimuth angle. In addition, assuming the 'ㅁ' shape layout, energy efficiency performance and potential of PV Panel installation also were analyzed by floors and azimuth angle, reflecting the shading effects by surrounding buildings. As the results of the study, the effect of Heat Gain by SHGC was greater than Heat Loss due to the Heat-transfer Coefficient. So it is more effective to increase SHGC to satisfy the same Heating Demand, and increasing SHGC made possible to design windows with low Heat-transfer Coefficient. It was also revealed that the difference in annual Heating and Cooling Demands between the low, mid and high floor households is significantly high. In addition to it, the installation of PV Panel in the form of a shading canopy over the window reduces the Cooling Load while at the same time producing electricity, and also confirmed that absolute thermal energy efficiency could not be maximized without controlling the thermal bridge and ventilation problems as important heat loss factors.

3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images (드론 열적외선 영상을 이용한 3차원 열공간 모델링)

  • Shin, Young Ha;Sohn, Kyung Wahn;Lim, SooBong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • Systematic and continuous monitoring and management of the energy consumption of buildings are important for estimating building energy efficiency, and ultimately aim to cope with climate change and establish effective policies for environment, and energy supply and demand policies. Globally, buildings consume 36% of total energy and account for 39% of carbon dioxide emissions. The purpose of this study is to generate three-dimensional thermo-spatial building models with photogrammetric technique using drone TIR (Thermal Infrared) images to measure the temperature emitted from a building, that is essential for the building energy rating system. The aerial triangulation was performed with both optical and TIR images taken from the sensor mounted on the drone, and the accuracy of the models was analyzed. In addition, the thermo-spatial models of temperature distribution of the buildings in three-dimension were visualized. Although shape of the objects 3D building modeling is relatively inaccurate as the spatial and radiometric resolution of the TIR images are lower than that of optical images, TIR imagery could be used effectively to measure the thermal energy of the buildings based on spatial information. This paper could be meaningful to present extension of photogrammetry to various application. The energy consumption could be quantitatively estimated using the temperature emitted from the individual buildings that eventually would be uses as essential information for building energy efficiency rating system.

Design For System Algorithm for Implement Machine Socialization Environment (DDNS 기반 가정 에너지 관리 시스템 설계)

  • Lee, Chun-Hui;Kim, Wung-Jun;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.629-631
    • /
    • 2015
  • Recently, the actual demand for electricity usage to out of demand forecasting demand appears to be based on the power of Government to address the insecurity is there are a lot of efforts on a more efficient energy management. In 2011, the first major outage, blackout since the current rate of no more than 10% of our power plants, such as power supply and demand crisis is being repeated. In addition, energy management systems, the demand for care and social areas are being expanded. In this paper, Building power supply and wired/wireless router and to optimize the DDNS (Dynamic Domain Name Service) for remote control and monitoring device for electric consumption Presonal Energy Management System offers a way to implement it. In the future, remote control and access the user's can minimize the settings for additional research is needed.

  • PDF

A Study on Energy Use Monitoring and Analysis Case for Small and Medium-Sized Buildings (중소형 건물에 적합한 에너지사용량 모니터링 및 분석 사례 연구)

  • Lee, Hye-Jin;Kim, Myung-Jin;Kim, Jin-Ho;Lee, Dongho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.499-509
    • /
    • 2019
  • This paper discusses energy use monitoring and analysis as part of a study on a low-cost energy supply management system that links an existing database with weather information with no real-time monitor for energy demand of buildings using renewable energy, generator and energy storage systems. This study is targeted at small and medium-sized buildings and aims to monitor energy use with a small number of sensors at low cost by applying an energy management system (EMS). The present study can help overcome the limitations of high-cost EMS applied to large commercial and public buildings. We developed current, indoor temperature and human motion sensors and installed them in an office of a company in a sample building. Through these sensors, we analyzed energy use patterns and the effects of weather information and human motion on the energy use. Furthermore, we analyzed the correlations between the total KEPCO energy use of the sample building and weather by comparing these two data. The results showed that the office energy use of a company was more affected by human motions than by weather information. The comparison between the total energy use of the Building and weather information found that external temperature had an effect on the energy use.