• Title/Summary/Keyword: Building disaster prevention

Search Result 272, Processing Time 0.034 seconds

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

A numerical analysis study on the flammable volume by leakage of hydrogen fuel vehicles in parking lot (지하주차장 내 수소연료차의 수소 방출시 가연체적에 관한 수치해석적 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Kim, Doo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.439-449
    • /
    • 2021
  • The recent reduction in greenhouse gases, interest in environmental pollution such as low-carbon emission policies is increasing. Accordingly, the penetration rate of eco-friendly vehicles, including hydrogen battery vehicles capable of reducing carbon emission, is increasing, and thus it is required for disaster prevention and safety-related measures. In this study, the degree of risk for the concentration distribution of hydrogen when leaking hydrogen fuel vehicles according to ventilation conditions was analyzed through numerical analysis, limited to places in parking lots. As a result, when only one hydrogen tank was released, the combustible volume ratio of hydrogen in the underground parking lot was up to 8.6%, and as ventilation continued, the volume ratio of combustible hydrogen decreased to less than 1% after 150 seconds, indicating that mechanical ventilation is essential. In the case of simultaneous release or stage release of three hydrogen tanks, the final combustible volume ratio of hydrogen is similar, but the increase in the combustible volume ratio of hydrogen in the early stage of release is low, and further research is expected.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

The Floor Layout Plan of Classrooms for Securing Evacuation Stability in School (학교의 피난 안전성 확보를 위한 층별 학급 배치방안)

  • Lee, Soon Beom;Lee, Jai Young;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.509-515
    • /
    • 2021
  • This study analyzes the efficient floor layout plan of classrooms for securing evacuation stability in school in case of fire by using the Pathfinder simulation program. Efficient evacuation methods and safety were evaluated by analyzing REST (Required Safe Egress Time) according to the allocation of personnel by floor targeting a high school 5-story building equipped with a ramp and stairs. The current status of personnel assignments exceeded the Required Safe Egress Time(RSET), resulting in a problem with evacuation safety. When students were placed on the 3rd, 4th, and 5th floors, the result was that the time exceeded RSET the most. When students were placed on the 1st, 2nd, and 3rd floors, the result was that they completed evacuation in the shortest time, less than RSET. In the current state, when evacuation was guided by designating an evacuation exit depending on the location, the result of shortening RSET was obtained. As a result, it is effective to put the students on the lower floors when placing students in high-rise school buildings in terms of evacuation safety, and in the preliminary training, it is required to designate evacuation exits so that they can use the nearest exit for each location in case of a fire. As a future research project, additional research is needed on the RSET when a fire occurs in a specific location according to whether the automatic fire door at that location is opened or closed.

Analysis of Ambivalence Differences among Groups for Temporary Firefighting Facilities of Workers at Construction Sites (공사현장 근로자의 임시소방시설에 대한 집단 간 Ambivalence 차이분석)

  • Moon, Pil-Jae;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.765-778
    • /
    • 2021
  • The purpose of this study is to prevent fire accidents in advance by deriving prior knowledge among groups about temporary fire-fighting facilities of workers at construction sites and devising appropriate improvement measures. The findings are as follows.First, in the case of fire extinguishers, statistical attention was paid to the contractor, supervisor, partner worker and fire extinguisher manager between designations. 87% of fire managers and 70% of facility supervisors said fire extinguisher management managers needed to be designated for each type of construction, which requires designation of fire extinguisher management managers, frequently checking and relocating. Second, in the case of simple fire extinguishing facilities, statistical attention was paid to the application of penalties for unauthorized use of fire extinguishing facilities with construction companies, supervisors, and business partners.Third, in the case of emergency alarm measures, statistical attention was paid to the application of emergency alarm sound to temporary broadcasting facilities with construction works, supervisors, and business partners.Fourth, in the case of induction, statistical attention was paid to the application of connection between construction works, supervisors, and partner workers, such as passage guidance, emergency lighting, etc.It was found that 65% of construction workers and 55% of electrical workers had different applications such as aisle guidance and emergency lighting for each type of business partner. In order to resolve blind spots such as evacuation zone guidance due to the structure of the building, it is necessary to easily distinguish the direction of the entrance door from a long distance by applying it in conjunction with passage guidance lights and emergency lighting.

Lateral Earth Pressures Acting on Anchored Diaphragm Walls and Deformation Behavior of Walls during Excavation (지하굴착시 앵커지지 지중연속벽에 작용하는 측방토압 및 벽체의 변형거동)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho;Yun, Jung-Mann
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.77-88
    • /
    • 2007
  • Lateral earth pressure and horizontal displacement of the diaphragm walls constructed in multi-soil layers were analyzed by the field instrumentation from six building construction sites in urban area. The distribution of the developed earth pressure of the anchored diaphragm walls during excavation shows approximately a trapezoid diagram. The maximum earth pressure of anchored diaphragm walls corresponds to $0.45{\gamma}H$ and the earth pressure acts at the upper part of the walls. The maximum earth pressure is two times larger than the empirical earth pressure of flexible walls in sands suggested by Terzaghi and Peck(1967), Tschebotarioff(1973), and Hong and Yun(1995a). The horizontal displacement of diaphragm walls is closely related with supporting systems such as struts, anchors, and so on. The horizontal displacement of anchored walls shows less than 0.1 percent of the excavated depth, and the horizontal displacement of strutted walls shows less than 0.25 percent of the excavated depth. Therefore, the restraining effect of horizontal displacement to the anchored diaphragm walls is larger than the strutted diaphragm walls. In addition, since the horizontal displacement of the diaphragm walls is lower than the criterion, $\delta=0.25%H$, used for control the anchored retention wall using soilder piles, the safety of excavation sites applied with the diaphragm walls is pretty excellent.

Flood Runoff Simulation Using GIS-Grid Based K-DRUM for Yongdam-Dam Watershed (GIS격자기반 K-DRUM을 활용한 용담댐유역 홍수유출모의)

  • Park, Jin Hyeog;Hur, Young Teck;Ryoo, Kyong Sik;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.145-151
    • /
    • 2009
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. K-DRUM (K-water hydrologic & hydaulic Distributed flood RUnoff Model) which was developed to calculate flood discharge connected to radar rainfall based on long-term runoff model developed by Kyoto- University DPRI (Disaster Prevention Research Institute), and Yondam-Dam watershed ($930km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model (K-DRUM). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.

Research on Environmentally-Sound Erosion Control Works(II) -The Management and Guidelines of Riparian Zone in Japan- (환경(環境)과 조화한 사방사업(砂防事業)(II) -일본(日本)에 있어서 수변지역(水邊地域)의 관리(管理)와 지침(指針)-)

  • Chun, Kun-Woo;Kim, Kyoung-Nam;Seomun, Won;Yeom, Kyu-Jin;Ezaki, Tsugio
    • Journal of Forest and Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.112-127
    • /
    • 1998
  • A meeting for Japan Society of Erosion Control Engineering took place, from May 20-21 in Sapporo, Japan, with the presentations of 21 special topics and 185 general papers. Special topics consists of 6 copies on volcanic disaster prevention, 6 copies on the activity report of Earthquake Erosion Control Engineering Society, 5 copies on the management and guidelines of riparian zone and 4 copies on debris disaster occurred in 1997. General papers consists of 10 copies on slope stability, 10 copies on slope failure, 9 copies on earthquake, 41 copies on environmental erosion control, 25 copies on debris flow, 11 copies on warning and refuge, 10 copies on erosion control plan, 11 copies on erosion control project, 10 copies on erosion control facility, 12 copies on volcanic erosion control, 4 copies on revegetation technology, 4 copies on forest hydrology, 4 copies on avalanche, 4 copies on landslide, 18 copies on debris flow and 2 other copies presented by international student. Among the special topics, 5 papers with the titles of the function and structure of riparian zone, the interactive relation of flood and riparian zone, the management method of channel and river forest for controlling debris flow, the forest restoration efforts by native population, the law and social issue for building river riparian zone were presented in the subsection of "The Management and Guidelines of Riparian Zone". Thus, this article summarize and introduce the presented contents which are very important and can be referred to keep environmentally sound-river in the erosion control field.

  • PDF

A History of Termite Control and Improvements to Prevent Termites in Wooden Architectural Heritage (국내외 흰개미 방제 기술의 발달 과정과 목조건축문화재의 흰개미 피해 저감을 위한 방안)

  • LEE, Sangbin;IM, Ikgyun;KIM, Sihyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.194-215
    • /
    • 2021
  • Termites are important decomposers in the ecosystem. They are also economically significant structural pests. In this study, we reviewed the developments of termite control and recent research on termite management to provide information on the prevention and control of termites. In Korea, most of the damage to wooden historical buildings is caused by subterranean termites. Reticulitermes speratus kyushuensis is the main species, which is widely found throughout the country. In the early 1900s, inorganic insecticides, such as arsenic dust, were used for termite control. After the synthesis of chlorinated hydrocarbon pesticide in the 1940s, it was widely utilized and demonstrated high termite control efficacy. However, chlorinated hydrocarbon insecticides were later banned, disappearing from markets after reports emerged concerning environmental contamination and toxicity to humans. Therefore, the termite control industry sought a new termiticide; hence many pesticides were utilized for termite control. Organophosphate (1960s), carbamate (1970s), pyrethroid, and insect growth inhibitor (1980s) were newly synthesized and adopted. In the 1990s, the first commercial baits using chitin synthesis inhibitors (CSI) were developed, providing a means to eliminate an entire colony of subterranean termites around a structure. Many studies have been carried out on soil termiticides (liquid termiticides) and CSI baits to increase their efficacy, and different baits such as aboveground bait stations, fluid bait, and high-durability bait were also developed in the 2000s. In addition, the paradigm of termite control has shifted from localized treatments using soil termiticides to area-wide pest management using CSI baits to create termite-free zones and protect buildings over time. Termite infestations in wooden historical buildings in Korea have been reported since 1980, and considerable attention was drawn in the 1990s when several UNESCO world heritages such as the Jongmyo Shrine and the Janggyeong Panjeon Depositories of Haeinsa Temple were infested by subterranean termites. Since then, a survey of termite infestation in wooden architectural heritage has been conducted, and the National Research Institute of Cultural Heritage and Heritage Care Program regularly monitors those properties. Finally, we suggest termite management using primarily CSI baits, selective application of various soil treatments applied to the object, foundation soil treatment, research and development of durable termite baits, application of area-wide programs for wooden-building complexes, application of integrated termite management (ITM), and regular education for owners and managers to prevent and reduce termite damage.

Study of Minimum Passage Size of Subterranean Termites (Reticulitermes speratus kyushuensis) (국내 흰개미(Reticulitermes speratus kyushuensis)의 최소 통과 직경 연구)

  • Kim, Sihyun;Lee, Sangbin;Lim, Ikgyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.188-197
    • /
    • 2020
  • Termites play an important role as decomposers of the forest ecosystem, while simultaneously causing enormous damage to wooden structures. Currently, two species of subterranean termites have been reported in Korea, and termite damage to historical wooden buildings is occurring nationwide due to climate change, forest fertility, and the locational characteristics of historical wooden buildings. Subterranean termites make their nests underground or inside timber. Termites move underground and access wooden structures through the lower parts of the buildings, adjacent to the ground. Once termites attack the wooden structures, it not only spoils the authenticity of cultural heritage structure, but also hampers structural stability due to the decrease in the strength of the material. Therefore, it is important to prevent termite damage before it occurs. Chemical treatments are mainly used in Korea to control and prevent the damage. In foreign countries, physical barriers are also used to prevent entry to wooden buildings, along with chemical treatments. Physical barriers involve installing nets or particles that termites cannot pass through in the lower part of the building, around the pipes, and between the edges of the building or exterior walls and interior materials. Advantages of a physical barrier are that it is an eco-friendly method, maintains long-term effect after installation, and does not require the use of chemical treatments. Prior to applying physical barriers, studies into the characteristics of termite species must be undertaken. In this study, we evaluated the minimum passage size that each caste of Reticulitermes speratus kyushuensis can move through. We found that workers, soldiers, and secondary reproductive termites were able to pass through diameters of 0.7mm, 0.9mm, and 1.1mm respectively. Head height of termites was an important factor in determining the minimum passing size. Results from the current study will be used as a basis to design the mesh size for physical barriers to prevent damage by termites in historical wooden buildings in Korea.