• Title/Summary/Keyword: Building damages

Search Result 354, Processing Time 0.026 seconds

Assessment of damages on a RC building after a big fire

  • Ada, Mehmet;Sevim, Baris;Yuzer, Nabi;Ayvaz, Yusuf
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.177-197
    • /
    • 2018
  • This paper presents a case study about the damages on the structural elements of a cast in place reinforced concrete (RC) building after a big fire which was able to be controlled after six hours. The fire broke off at the $2^{nd}$ basement floor of the building, which has five basements, one ground, and two normal floors. As a result of intensely stocked ignitable materials, it spread out to the all of the upstairs. In visual inspection, most of the typical fire damages were observed (such as spalling, net-like cracks, crumbled plasters, bared or visible reinforcement). Also, failures of the $2^{nd}$ basement columns were encountered. It has been concluded that the severity failures of the columns at the $2^{nd}$ basement caused utterly deformation of the building, which is responsible for the massive damages on the beam-column connections. All of the observed damages were categorized related to the types and presented separated regarding the floors. Besides to the visual inspection, the numerical analysis was run to verify the observed damaged on the building for columns, beams, and the connection regions. It is concluded from the study that several parameters such as duration of the fire, level of the temperature influence on the damages to the RC building. Also, it is highlighted by the study that if the damaged building is considered on the overall structural system, it is not able to satisfy the minimum service requirements neither gravity loads nor earthquake conditions.

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.

A Basic Study on Reginal Prediction Model for Building Damage Costs acrroding to Hurricane (태풍에 따른 지역별 건물피해액 예측모델 개발 기초연구)

  • Kim, Boo-Young;Yang, Seongpil;Kim, Sang ho;Cho, Han Byung;Son, Kiyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.253-254
    • /
    • 2015
  • Currently, according to the climate change, the damages due to the hurricane is more increased than before. In this respect, several countries have been conducted the studies regarding the damage prediction model of buildings to minimize the damages from natural disaster. As hurricane is the complex disaster including a strong wind and heavy rain, to predict the damage of hurricane, various factors has to be considered. However, mostly research has been conducted to consider only hurricane properties. Therefore, the objective of this study is to develop the regression model for predicting damages of buildings considering geography, socio-economy, construction environment and hurricane information. In the future, this study can be utilized to developing damage prediction model for building from hurricane in South Korea.

  • PDF

Investigation of blast-induced ground vibration effects on rural buildings

  • Oncu, Mehmet Emin;Yon, Burak;Akkoyun, Ozgur;Taskiran, Taha
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.545-560
    • /
    • 2015
  • In this paper, blast-induced vibration effects on buildings located in rural areas were investigated. Damages to reinforced concrete, adobe and masonry buildings were evaluated in Çatakk$\ddot{o}pr\ddot{u}$ and Susuz villages in Silvan district of Diyarbakir, Turkey. Blasting of stiff rocks to construct highway at vicinity of the villages damaged the buildings seriously. The most important reason of the damages is lack of engineering services and improper constructed buildings according to the current building design codes. Also, it is determined that, inappropriate blast method and soft soil class increased the damages to the buildings. The study focuses on four points: Blast effect on buildings, soil conditions in villages, building damages and evaluation of damage reasons according to the current Turkish Earthquake Code (TEC).

BIM model-based structural damage localization using visual-inertial odometry

  • Junyeon Chung;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.561-571
    • /
    • 2023
  • Ensuring the safety of a structure necessitates that repairs are carried out based on accurate inspections and records of damage information. Traditional methods of recording damage rely on individual paper-based documents, making it challenging for inspectors to accurately record damage locations and track chronological changes. Recent research has suggested the adoption of building information modeling (BIM) to record detailed damage information; however, localizing damages on a BIM model can be time-consuming. To overcome this limitation, this study proposes a method to automatically localize damages on a BIM model in real-time, utilizing consecutive images and measurements from an inertial measurement unit in close proximity to damages. The proposed method employs a visual-inertial odometry algorithm to estimate the camera pose, detect damages, and compute the damage location in the coordinate of a prebuilt BIM model. The feasibility and effectiveness of the proposed method were validated through an experiment conducted on a campus building. Results revealed that the proposed method successfully localized damages on the BIM model in real-time, with a root mean square error of 6.6 cm.

Current Status and Cases of Lightning Damages in Korea (낙뢰피해 실태와 사례)

  • Lee, Ki-Hong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.45-47
    • /
    • 2007
  • This paper gives the current status of lightning damages in apartments which are obtained by questionnaire and the cases of lightning damages in Korea. Survey result shows that lightning damages are increasing every year and taking place everywhere not only building but also mountain. As a result advanced lightning protection systems are required to reduce the lightning damages in various structures.

  • PDF

A Study on a System of Resolving Claim according to the Delay of Construction Projects - Focus on Liquidated Damages - (공기지연에 따른 클레임 대응방안에 관한 연구 - 지체상금을 중심으로 -)

  • 이영민;이상범;김정길
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.111-116
    • /
    • 2002
  • The delay of the completion of the construction project occurs frequently because the origin schedule is affected by numerous factors that contribute to the overall delay in completing the project. But in our country. the dealing with a claim is not sufficient yet by reasons of fairl relation between owner and constructor, cognitive shortage in claim, and such. especially they have make a wrong application of baseless the rule. In this study. we make a rational model ; that includes calculating of dispute costs, and suggest the solution and the prevention for claim by considerating the law followed liquidated damages.

  • PDF

A STUDY ON THE SYSTEM DEVELOPMENT FOR MANAGEMENT OF MINING-RELATED DAMAGES USING GIS

  • Kim, Jung-A;Yoon, Suk-Ho;Kim, Won-Kyun;Choi, Jong-Kuk
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.95-97
    • /
    • 2007
  • The mining-related damages due to the mining operations such as ground subsidence, tailing, Acid Mine Drainage, and soil contamination have a significant effect on our social and economical environment. So, for the effective prevention and reclamation works of the hazards in the mining area, the systematic management of mine information and mining-related damages is urgently needed. In this study, we estimated the possibilities of GIS-based system development for the mining area and related database. We classified the steps of building GIS as mine itself, mining-related damages, rehabilitation works and additional functions for estimating damages and analyzed the essential database and functions for each step. GIS will be helpful to estimate the mining-related damages and to carry out the reclamation works effectively.

  • PDF

Comparison of aerodynamic loading of a high-rise building subjected to boundary layer and tornadic winds

  • Ashrafi, Arash;Chowdhury, Jubayer;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.395-405
    • /
    • 2022
  • Tornado-induced damages to high-rise buildings and low-rise buildings are quite different in nature. Tornado losses to high-rise buildings are generally associated with building envelope failures while tornado-induced damages to low-rise buildings are usually associated with structural or large component failures such as complete collapses, or roofs being torn off. While studies of tornado-induced structural damages tend to focus mainly on low-rise residential buildings, transmission towers, or nuclear power plants, the current rapid expansion of city centers and development of large-scale building complexes increases the risk of tornadoes impacting tall buildings. It is, therefore, important to determine how tornado-induced load affects tall buildings compared with those based on synoptic boundary layer winds. The present study applies an experimentally simulated tornado wind field to the Commonwealth Advisory Aeronautical Research Council (CAARC) building and estimates and compares its pressure coefficient effects against the Atmospheric Boundary Layer (ABL) flow field. Simulations are performed at the Wind Engineering, Energy and Environment (WindEEE) Dome which is capable of generating both ABL and tornadic winds. A model of the CAARC building at a scale of 1:200 for both ABL and tornado flows was built and equipped with pressure taps. Mean and peak surface pressures for TLV flow are reported and compared with the ABL induced wind for different time-averaging. By following a compatible definition of the pressure coefficients for TLV and ABL fields, the resulting TLV pressure field presents a similar trend to the ABL case. Also, the results show that, for the high-rise building model, the mean and 3-sec peak pressures are larger for the ABL case compared to the TLV case. These results provide a way forward for the code implementation of tornado-induced pressures on high-rise buildings.

The Impact of Building Types on Fire Damage by Month

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.567-575
    • /
    • 2019
  • Statistics show that while the number of fires has decreased over the last decade, losses of human life and economic property due to fire have increased. Moreover, the number of large-scale fires that have occurred in recent years has resulted in heightened public anxiety. This study aims to identify a specific period of the year most vulnerable to fire, and fire trends, such as damage of fire to humans, to the economy, and different building types. For this purpose, we analyzed human and economic damages using statistics related to fire from 2007 to 2017 and provided a monthly distribution of fire damages both to humans and to the economy by building type. We also identified the relationship between the human damage and the economy damage, and compared the economic losses per casualty by building type. The human damage in residential buildings occupied the highest portion, whereas the economic damage of industrial buildings represented more than a half of all economic damage due to fire. The economic damage per casualty was shown highest for industrial buildings and has also increased rapidly in recent years.