• Title/Summary/Keyword: Building component

Search Result 652, Processing Time 0.033 seconds

Flow and Brand Equity on the Internet Auction (인터넷 경매에서 플로우의 형성요인과 브랜드 자산에 미치는 영향)

  • Lee, Seung-Chang;Won, Jung-Jong;Lee, Ho-Geun
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.2
    • /
    • pp.56-82
    • /
    • 2008
  • The topic on Flow is generating increased interests in e-commerce studies. Flow has been identified as a key component in e-commerce. Studies on Flow have so far focused on internet shopping mall, but scarcely looked at the Flow of Internet auction. The purpose of study is to find out which factors play a major role in building Flow on internet auction and how the built-up Flow affect Brand Equity. Therefore, the research model investigates what factors influence Flow. Furthermore, the research is designed to understand how the Flow influences Brand Equity. The antecedents of Flow classifies into three types such as personal (Challenge, Skill), IT characteristic, Internet Auction characteristic. The results of this empirical study shows that three characteristics significantly affected the flow:personal (Challenge), IT (information quality, system quality), and Internet Auction (interactivity). And also Flow has significant effect on the brand equity. This result indicates that customer's optimal experience is important to increase brand equity. That is, the flow is influenced by multi-dimensional factors and plays an important role in increasing brand equity. Finally, the finding of this study suggests that personal challenge, information quality, system quality, and interactivity should be enhanced preferentially.

  • PDF

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

Current and Future Trends of Accelerators and Antidegradants for the Tire Industry

  • Hong, Sung-W.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.156-176
    • /
    • 1999
  • Rubber chemicals such as accelerators, antidegradants, vulcanizing agents, processing agents and retarders are very important to the production and protection of tires and rubber goods. The use of accelerators and antidegradants are evaluated in various tire components. This paper will focus on how to vulcanize tires economically and maintain the physical properties of each tire component without severe degradation due to oxygen, heat and ozone. Also, new non-nitrosoamine accelerators and non-staining antiozonants will be discussed. Lastly, the future requirements of antidegradants and accelerators in the tire industry will be reviewed. Tires have been vulcanized with Sulfenamides as primary accelerators and either Guamdine's or Thiurams as secondary accelerators to achieve proper properties at service conditions. However, interior components such as the carcass can be vulcanized with Thiazoles as a primary accelerator to cure faster than the external components. Using the combination of Sulfenamide with secondary accelerators in a tire tread compound and the combination of a Thiazole and Guanidine in a carcass compound will be presented with performance data. Uniroyal Chemical and another Rubber Chemical Manufacturer have developed, "Tetrabenzyl Thiuram Disulfide," (TBzTD) as a non-Nitrosoamine accelerator, which could replace Nitrosoamine generating Thiurams. This new accelerator has been evaluated in a tread compound as a secondary accelerator. Also, Flexsys has developed N-t-butyl-2-benzothiazole Sulfenamide (TBSI) as a non-Nitrosoamine accelerator which could replace 2-(Morpholinothio) -benzothiazole (MBS), a scorch delayed Sulfendamide accelerator. TBSI has been evaluated in a Natural Rubber (NR) belt skim compound vs. MBS. An optimum low rolling resistant cure system has been developed in a NR tread with Dithiomorpholine (DTDM). Also, future requirements for developing accelerators will be discussed such as the replacement of DTDM and other stable crosslink systems. Antidegradants are divided into two different types for use in tire compounds. Internal tire compounds such as apex, carcass, liner, wire breaker, cushion, base tread and bead compounds are protected by antioxidants against degradation from oxygen and heat due to mechanical shear. The external components such as sidewall, chafer and cap tread com-pounds are protected from ozone by antiozonants and waxes. Various kinds of staining and non-staining antioxidants have been evaluated in a tire carcass compound. Also, various para-phenylene diamine antiozonants have been evaluated in a tire sidewall compound to achieve the improved lifetime of the tire. New non-staining antiozonants such as 2, 4, 6-tris-(N-1, 4-dimethylpentyl-p-phenylene diamine) 1, 3, 5 Trizine (D-37) and un-saturated Acetal (AFS) will be discussed in the tire sidewall to achieve better appearance. The future requirements of antidegradants will be presented to improve tire performance such as durability, better appearance and longer lasting tires.

  • PDF

Evaluation of Conventional Prediction Models for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchangers (수평형 지중열교환기 설계를 위한 토양 열전도도 예측 모델 평가)

  • Sohn, Byonghu;Wi, Jihae;Park, Sangwoo;Lim, Jeehee;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.5-14
    • /
    • 2013
  • Among the various thermal properties, thermal conductivity of soils is one of the most important parameters to design a horizontal ground heat exchanger for ground-coupled heat pump systems. It is well known that the thermal conductivity of soil is strongly influenced by its density and water content because of its particulate structure. This paper evaluates some of the well-known prediction models for the thermal conductivity of particulate media such as soils along with the experimental results. The semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry soils. It comes out that the model developed by Cote and Konrad provides the best overall prediction for unsaturated sands available in the literature. Also, a parametric analysis is conducted to investigate the effect of thermal conductivity, water content and soil type on the horizontal ground heat exchanger design. The results show that a design pipe length for the horizontal ground heat exchanger can be reduced with an increase in soil thermal conductivity. The current research concludes that the dimension of the horizontal ground heat exchanger can be reduced to a certain extent by backfilling materials with a higher thermal conductivity of solid particles.

Development of Parametric BIM Libraries for Civil Structures using National 2D Standard Drawings (국가 표준도를 이용한 토목 구조물 BIM 파라메트릭 라이브러리 구축에 관한 연구)

  • Kim, Cheong-Woon;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.128-138
    • /
    • 2014
  • Development of infrastructure component libraries is a critical requirement for the accelerated adoption of BIM in the civil engineering sector. Libraries reduce the time for BIM model creation, allows accurate quantity take offs, and shared use of standard models in a project. However, such libraries are currently in very short supply in the domestic infrastructure domain. This research introduces library components for retaining walls and box culverts generated from 2D standard drawings made publicly available by MOLIT. Commercial BIM software was used to create the concrete geometry and rebar, and dimensional/volumetric parameters were defined to maximize the reuse and generality of the libraries. Use of the these libraries in a project context demonstrates that they allow accurate and quick quantity take offs, and easier management of geometric information through the use of a single library as to numerous 2D drawings. It also demonstrates the easy modification of the geometries of the components if and when they need to changed. However, the application also showed that some of the rebar components (stirrups and length wise rebars) do not get properly updated when concrete geometries are changed, demonstrating the limits of current software applications. The research provides evidence of the many advantages of using BIM libraries in the civil engineering, thus providing the incentive for further development of standard libraries and promoting the use of BIM in infrastructure projects.

An Experimental Study on Fundamental Properties of a Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인 시작품의 기초 물성평가)

  • Chang, Soo-Ho;Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.220-234
    • /
    • 2016
  • Sprayable waterproofing membrane has been considered as a substitute for a sheet waterproofing membrane in a variety of underground excavation works. However, fundamental properties of sprayble waterproofing membrane have not been fully given yet. In this study, a new two-component sprayable waterproofing membrane prototype was developed. In addition, its physico-mechanical properties were measured and compared with those of two kinds of thin spray-on liners where constitutive materials and construction methods are very close to each other. From direct tensile tests, the sprayable waterproofing membrane with elongations at break between 250% and 300% showed much higher ductility than TSLs. However, the sprayable waterproofing membrane had a limitation as a support member since its bond strength and loading capacity was lower than those of TSLs. From three-dimensional X-ray CT images, the porosity of the sprayable waterproofing membrane was estimated to be 26.13%. However, most of pores which might have been generated during membrane curing were not observed to be interconnected but isolated.

Evaluating Performance of Cable-Inspection Robot in Cable-Supported Bridge (케이블지지 교량의 케이블 점검 로봇 성능 평가)

  • Kim, Jaehwan;Seo, Dong-Woo;Jung, Kyu-San;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.74-79
    • /
    • 2020
  • Safety inspection of cable-supported bridge has increasingly attention as many cable-supported bridges are currently constructed/operated. Whilst cables as a main component in cable-supported bridge should be inspected regularly, traditional method (visual inspection) has limitation to check the condition of cables properly due to restricted factors. It is evidently necessary to develop cable-inspection robot to overcome this concern. In this respect, the main aim in this study is to manufacture the improved robot compared with the existing robot. The improved functions of the robot in this study were that the robot can be operated in large cable diameter (greater than 200 mm) and climbing ability of the robot increases. In addition, electro-magnetic sensor as a non-destructive method in the robot was added to detect damaged cables and performance of the sensor was evaluated in indoor and field experiments. Consequently, the robot was able to move on the cable with ~0.2m/s and to detect damaged cables using the sensor. It was also confirmed that performance of the robot in field test is similar to that in indoor test.

A Study of Scientific Research on the Ancient Roof Tiles in Korea Related to Cheonwangsa Temple of Hanam City (고대기와의 자연과학적 분석 연구 경기도 하남시 천왕사지출토기와를 중심으로)

  • Hong, Jong-Ouk
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.349-369
    • /
    • 2004
  • Today, in the cultural properties research, there are several methods for knowing the culture of the past through a lot of information that remains and relics contain. Especially, statistical method like presumption of producing center were introduced from computer development at the early 20th century. This study showed the characteristic about firing historic sites presumed as a tile-kiln in the remains of Cheonwang temple sites, Hanam, Gyeonggi province. Also, I used nature scientific methods for correlation between tiles excavated at historic sites and circumference building and obtained there results as follows. First, soft tile parts showed similar water suction ratio(over 10%) like another tiles, except hard tile parts. Second, identification about mineral crystallization in a sample showing low water suction ratio confirmed a result that Mullite, Tridymite, Cristobalite as high temperature crystal form were presented. I know that firing temperature was higher than the other tile parts from this result. Third, statistical analysis from micro-component resulted that tiles excavated at firing historic sites and Cheonwang temple sites were closely connected. As the results, I knew that the tiles got a supply after the establishment of tile-kiln, not at a long distance at the period of Cheonwang temple construction.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

Bioactive Lipids and Their Derivatives in Biomedical Applications

  • Park, Jinwon;Choi, Jaehyun;Kim, Dae-Duk;Lee, Seunghee;Lee, Bongjin;Lee, Yunhee;Kim, Sanghee;Kwon, Sungwon;Noh, Minsoo;Lee, Mi-Ock;Le, Quoc-Viet;Oh, Yu-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.465-482
    • /
    • 2021
  • Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.