• Title/Summary/Keyword: Building accident

Search Result 452, Processing Time 0.03 seconds

Analysis of Road Cross Section Component Affecting Traffic Accident Severity on National Highway (국도상 교통사고 심각도에 영향을 미치는 횡단구성 요소 분석)

  • Park, Jaehong;Yun, Dukgeun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.143-149
    • /
    • 2017
  • According to traffic accidents statistics, the number of fatalities, injuries and the rate of increase of traffic accidents have been decreasing over last 5-years. The fatality rate is 1.9 for total accidents but the fatality rate for single vehicle accidents shows a 7.9, which is 4 times greater than the average for all accidents. Single vehicle accidents, usually occur as a vehicle impacts a fixed objects on the roadside as the vehicle runs-off from the road. However, few researches have been conducted considering the accident severity of single vehicle accidents which impact to the fixed objects on the road. The single vehicle accident is directly related to the composition of road cross section, (since it is the required the minimum width of a road for all run-off-the-road vehicles to recover or come to a safe stop). Therefore, this study analyzes the influence of road cross section on traffic accidents to find out the severity of single vehicle accident. To analyze the road elements which are related to the accident severity, the Ordered Probit Model was used. As variables, the element of road cross section such as the radius(m), vertical curve(%), cross sectional grade(%), road width(m). number of climbing lane, median, and curb, were used (as was the 3-years of accidents data). This study found out that cross slope(%), road width(m), and the number of climbing lane are related to the severity of accident. The result of this study could be expected to improve the road safety and to be used as the base data for further road safety research.

Importance Analysis of Major Factors in Formwork Collapse Accident (거푸집 붕괴사고 주요 요인별 중요도 분석)

  • Park, Ji-Yeong;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.249-256
    • /
    • 2021
  • Fatal accidents in the construction industry account for a higher proportion than other industries, and in particular, the collapse accident of formwork is likely to lead to a serious accident like death. This study aim to derive the importance ranking of formwork collapse factors using AHP technique for preventing fatal accident. The AHP survey was conducted on field construction engineers, construction project managers, safety managers, and formwork specialist foreman with 10 years on site experience. The results of AHP analysis is that the most importance factor of formwork collapse accident is 'non-compliance with the formwork shoring assembly drawing'. Next it is important in the order of 'poor installation of formwork shoring and accessories', 'formwork shoring is not installed vertically', 'non-compliance with the concrete curing period of the formwork shoring', 'safety supervisor not designated and negligent'. It is necessary to preferentially and intensively manage the high importance factors presented as a result of this research for reducing formwork collapse accident. In addition, it will contribute to reducing construction safety accidents if the factors of the formwork collapse accident suggested in this research are included in the formwork inspection check list and checked step by step in formwork construction.

A Basic Study for Quantification Model Development of Human Accidents on Construction Site in South Korea (한국 건설현장의 인명사고 리스크 정량화 모델 개발기초 연구)

  • Oh, June-Seok;Lee, Joo-Hyeong;Kim, Tae-Hee;Son, Ki-Young;Son, Seung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.45-46
    • /
    • 2019
  • Accident rate in domestic construction industry has been increased rapidly in every year. In particular, the rate of death has been shown very high compared with other industries. It means that safety activities performed by government is not effective in reducing the rate of accident. To solve these problems, the risk factors should be predicted in advance, controlled, monitored and managed from start of project to end of project. However, most studies have been conducted by using frequency of occurrence of accident and only listed the importance of risk. Therefore, the objective of this study is to provide basic material to develop risk quantifying model for human accidents on construction site in South Korea. In the future, it is expected to be used as a reference of study on developing safety mangement checklist in construction industry and model for forecasting accident.

  • PDF

A Basic Study on the Risk Assessment of Domestic Construction Companies (국내 건설업체의 위험성평가 실태조사 기초 연구)

  • Park, Hwan-Pyo;Han, Jae-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.240-241
    • /
    • 2019
  • Construction disasters have more distinctive characteristics than other industrial disasters. Since it is likely that construction disasters will spread to severe accidents, the accident mortality rate is very high compared to the disaster incidence rate. Therefore, the purpose of this study is to compare and analyze the operation status of construction risk assessment by domestic large and medium sized construction companies to prepare improvement direction of risk assessment system. The survey results for safety management experts of construction companies are as follows: Large companies have developed and utilized risk assessment systems in their respective companies, while small and medium construction companies have developed and evaluated risk factors through the Excel program. Rather than performing risk assessment tasks based on historical safety accident data, construction companies have limitations in developing risk factors and preparing solutions with suppliers for each major construction. Therefore, it is necessary to prepare a risk assessment system in the future by analyzing the types of safety accidents, such as the safety accident data of each company as well as the safety accident data.

  • PDF

A Comparative Study on Laws and Policies of Advanced Countries to Prevent Fall Accident (건설현장 추락재해 방지를 위한 해외 선진국간의 법령비교연구)

  • Oh, June-Seok;Lee, Joo-Hyeong;Jeon, Sang-Sub;Son, Ki-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.199-200
    • /
    • 2019
  • Although accidents in the domestic construction industry have been decreased gradually, deaths in the construction sites have been occupied 49.9 percent of the total industry and deaths from fall accident have been accounted for 59.7 percent of the construction industry. In order to prevent fall accident, Occupation Safety and Health Act(OSHA) was enacted for setting management standards and detailed regulations was designed by the Ministry of Employment and Labor. Although government has been pushed for companies and workers to comply the regulations, currently, many domestic construction sites have been violated. On the other hand, in safety-advanced countries such as the United States, Japan, and the EU, industrial accidents have been decreased due to continual application of adapted safety policies according to characteristic in each country. Therefore, it is necessary to analyze laws and polices of advanced countries and apply them to domestic construction sites in order to reduce fall accidents. Therefore, the objective of this study is to compare domestic laws related fall accident with advanced countries laws. In the future, the results of this study will be utilized as a reference to reinforce Occupation Safety and Health Act(OSHA).

  • PDF

Research on Establishing Ground Digital Twin Geo-ambulance Technology Development Strategy (지상 디지털트윈 지오앰뷸런스 기술개발전략 수립 연구)

  • Min-Song SEO;Yong-Gu JANG;Ryu-Ji SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.41-51
    • /
    • 2024
  • If an underground accident occurs, the cause must be quickly identified and human and material damage reduced. The Underground Accident Investigation Committee is responsible for identifying the causes of accidents and preparing response plans to prevent similar accidents from occurring in the future. The law stipulates that the Underground Accident Investigation Committee can operate from a minimum of 6 months to a maximum of 9 months after an accident occurs. However, the operation schedule of the Underground Accident Investigation Committee seems difficult to cite the accident investigation report to the construction project currently in progress at the same time project. In this study, the Underground Accident Investigation Committee seeks to establish a strategy for developing technology that can shorten data collection and analysis, which previously took 3 months, to less than 1 month. As a result of the research, five areas of technology development identified, ground data collection and transmission technology, ground safety data generation technology, digital twin-based underground safety analysis and visualization technology, digital twin-based geo-ambulance construction and operation technology, and digital twin-based geo-ambulance standardization and legal system. research was able to be conducted. If the proposed technology is developed, it is expected to contribute to reducing accident scenes through faster decision making than before.

A Study on Evaluation of Ultimate Internal Pressure Capacity of CANDU-type Nuclear Containment Buildings (CANDU형 원자로 격납건물의 극한내압능력 평가에 관한 연구)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.343-351
    • /
    • 2011
  • Nuclear containment building is the last barrier for being secure from any nuclear power plant accident. Therefore, it is very important to understand the ultimate capacity of nuclear containment building to loads associated with severe accidents. LOCA (loss of coolant accident) is considered as the basic accidental load and CANDU-type containment building is considered as a target structure in order to conduct the numerical analysis for the structural safety of a containment building. The CANDU-type containment building is a prestressed concrete shell structure which has the dome and the cylindrical wall and is reinforced with bonded tendons. In this paper, the evaluation of ultimate internal pressure capacity was carried out by nonlinear analysis of a prestressed concrete containment building using 3-dimensional structural analysis system.

A Risk Quantification Study for Accident Causes on Building Construction Site by Applying Probabilistic Forecast Concept (확률론적 추정 개념을 적용한 건설 공사 현장의 사고원인별 리스크 정량화 연구)

  • Yu, Yeong-Jin;Son, Kiyoung;Kim, Taehui;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2017
  • Recently the construction project is becoming large-sized, complicated, and modernize. This has increased the uncertainty of construction risk. Therefore, studies should be followed regarding scientifically identifying the risk factors, quantifying the frequency and severity of risk factors in order to develop a model that can quantitatively evaluate and manage the risk for response the increased risk in construction. To address the problem, this study analyze the probability distribution of risk causes, the probability of occurrence and frequency of the specific risk level through Monte Carlo simulation method based on the accident data caused at construction sites. In the end, this study derives quantitative analysis by analyzing the amount of risk and probability distributions of accident causes. The results of this study will be a basis for future quantitative risk management models and risk management research.

Research on Selection of Vulnerable Areas to Walking Traffic Accidents for the Elderly Considering Jaywalking Accidents (무단횡단사고를 고려한 노인 보행 교통사고 취약 지역 선정 연구)

  • Hong, Kiman;Im, I-jeong;Kim, Jonghoon;Song, Jaein
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.341-350
    • /
    • 2021
  • Purpose: The purpose of this study is to present an analysis method to select priorities for areas where the traffic safety system is applied to reduce pedestrian accidents. Method: Using Kernel density analysis using the coordinate information of the accident point, we performed density analysis of elderly walking accidents and elderly jaywalking accidents, and analysis of the weight of two types of walking accidents. Result: As a result of density analysis of the weight considering elderly jaywalking accidents, it was analyzed that the density of pedestrian traffic accidents for th elderly was higher in Gunsan-si, Jeongeup-si, and Gimje -si compared to Jeonju-si, where the number of elderly pedestrian accidents were high. Conclusion: The analysis results of this study are judged to be possible to use objective indicators for the selection of target sites for the introduction of the traffic safety system.

Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

  • Mignot, Guillaume;Paranjape, Sidharth;Paladino, Domenico;Jaeckel, Bernd;Rydl, Adolf
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.881-892
    • /
    • 2016
  • Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012-2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.