• Title/Summary/Keyword: Building Thermal Simulation

Search Result 285, Processing Time 0.026 seconds

Insulation Performance Evaluation of Apartment Housing Bying a Three-Dimensional Steady State Simulation (3차원 정상상태 해석에 의한 공동주택 단열성능 평가 - TDR(온도상대비)을 중심으로 -)

  • Choi, Bo-Hye;Choi, Gyoung-Seok;Kang, Jae-Sik;Lee, Seung-Eon;Lee, Yong-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.730-735
    • /
    • 2009
  • The purpose of this study is to consider improvement performance to prevent condensation and draw the optimum insulation design method for building using simulation tool. In this study, the three corners, weak part in condensation, were conducted by three-dimensional steady state simulation. From the results, it is required to strengthen insulation design, and it is founded that existing insulation system typically applied to most Korean apartment buildings has serious insulation defect that insulation is disconnected by structural components at the joints of wall-slab and wall-wall in envelope. So, it is considerate to need a concrete technology improvement.

  • PDF

Prediction of Latent Heat Load Reduction Effect of the Dehumidifying Air-Conditioning System with Membrane (분리막 제습공조시스템의 잠열부하 저감효과 예측)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The summer climate is very hot and humid in Korea. The humidity is an important factor in determining thermal comfort. Recently, the research for dehumidification device development has been attempted to save energy that is required for the operation of the current dehumidifiers on the market. Existing dehumidification systems have disadvantages such as wasting energy to drive a compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature so it doesn't have to consume cooling energy. In this paper, the cooling energy savings was studied when a dehumidification system was applied in a model building instead of a chiller. The sensible heat load was almost the same result, but the latent heat load was decreased by 38.9% and the total heat load was decreased by 8.5%. As a result, electric energy used to drive the compressor in a chiller was saved by applying a membrane air-conditioning system instead.

Analysis of Building Energy Reduction Effect based on the Green Wall Planting Foundation Type Using a Simulation Program (건물일체형 패널형 벽면녹화 식재기반 유형별 건물에너지 성능 분석)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.936-946
    • /
    • 2015
  • This study is aimed to analyze the reduction performance of building energy consumption according to planting base types of panel-type green walls which can be applied to existing buildings. The performance was compared to the general performance of green walls that have demonstrated effects of improving the thermal environment and reducing building energy consumption in urban areas. The number of planting base types was 4 in total, and simulations were conducted to analyze the thermal conductivity, thermal transmittance, and overall building energy consumption rate of each planting base type. The highest thermal conductivity by the planting base type was Case C (0.053W/mK), followed by Case B (0.1W/mK) and Case D (0.17W/mK). According to the results of energy simulation, the most significant reduction of cooling peak load per unit area was Case C (1.19%), followed by Case B (1.14%) and Case D (1.01%) when compared to Case A to which green wall was not applied; and the most significant reduction of heating peak load per unit area was estimated to be Case C (2.38%), followed by Case B (1.82%) and case D (1.50%) when compared to Case A. The amount of yearly cooling and heating energy use per unit area showed 3.04~3.22% of reduction rate. The amount of the 1st energy use showed 5,844 kWh/yr of decrease on average for other types when compared to Case A. The amount of yearly $CO_2$ emission showed 996kg of decrease on average when compared to Case A to which the green wall was not applied. According to the results of energy performance evaluation by planting location, the most efficient energy performance was eastward followed by westward, southward and northward. According to the results of energy performance evaluation by planting location by green wall ratio, it was found that as the ratio of green wall increased, the energy performance displayed better results, showing approx. double reduction rate in energy consumption at 100% of green wall ratio than the reduction rate at 20% to 80% of green wall ratio.

A Study of Microscopic Energy Simulation based on BIM - Illuminance & Energy Analysis of Illuminance Sensor Lighting (BIM 기반의 미시적 에너지 시뮬레이션에 관한 연구 -조도센서등의 조도 및 에너지 분석을 중심으로)

  • Baek, Ji-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.384-390
    • /
    • 2019
  • The importance of architecture design focused on eco-friendly and low energy continues to grow. In addition, the energy conservation design is required from a micro-perspective. Energy simulations based on BIM have attracted recent attention because of the high efficiency. On the other hand, the parameters concerned with microscopic energy are not included in BIM data. This study examined the necessity of the sensor-light parameter using a simulation of illuminance sensor light. In this study, illuminance sensors were installed into the BIM data and the operating schedule data of sensor light were generated by an illuminance simulation. The schedule data was then inputted into the simulation application, and the reduction ratio of power consumption was verified by the simulation. According to research, the power consumption and thermal load decreased by more than 20 %. Therefore, it is necessary to supplement the sensor-light parameter into BIM data for microscopic energy conservation design. This study was not confined to checking whether sensor-light parameter is necessary or not, but to ascertaining the necessary of applying a microscopic factor to generate BIM data.

A Study on the Evaluation of Thermal Transmittance Performance of Aluminum Alloy Window Frame of Educational Facility considering 2 Dimensional Steady-state Heat Transfer (2차원 정상상태 전열해석을 통한 교육시설의 알루미늄 창호 열관류율 평가에 관한 연구)

  • Park, Tong-So
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5284-5289
    • /
    • 2011
  • This study focused to evaluate thermal transmittance(U-value) performance of sliding type of aluminum alloy window frame(AAWF) with double glazing(DG) and glazing spacer and that without thermal breaker in winter and summer season by two dimensional steady state heat transfer analysis. The AAWE was installed to an existing educational facilities in Seosan area which is the southern region of the Korean Peninsula. Analysis of 2D steady-state heat transfer was performed through the use of BISCO as calculation and simulation program. U-value and temperature factors were calculated. The results are as followed. First, the isotherm simulation shows that AAWF with double glazing have serious differences from recently proposed window thermal performance standards such as Insulation Performance of Windows and Doors of Building Energy Saving Design Standards and the results of calculation of thermal transmittance performance of AAWF and DG are U=9.631 W/$m^2K$, U=2.382 W/$m^2K$ respectively during winter and summer season. Second, the results of analysis of heat transfer analysis, calculated by simulation, shows that 225% of heat is lost comparing with thermal performance standards U=4.0 W/$m^2K$ of general double glazing among those standards on AAWF without thermal breaker.

Analysis of Energy Performance and Green Strategies in the Foreign High-Performance Buildings

  • Park, Doo-Yong;Kim, Chul-Ho;Lee, Seung-Eon;Yu, Ki-Hyung;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • Purpose: In this study, we analyzed the energy performance levels and high-performance technology trends through the case studies of foreign high-performance buildings. Method: Buildings built within 10 years were selected for the analysis of recent trends. we analyzed the buildings of U.S.A, Germany and Japan using LEED certified buildings, Passive House certified buildings and CASBEE certified buildings database for the case study of foreign high-performance buildings. A total of 20 high-performance buildings including 14 cases in U.S.A, 4 cases in Germany and 4 cases in Japan were selected. Annual energy consumption levels for 20 high-performance buildings were collected with the actual energy consumption data or data from simulation programs officially recognized by DOE. Annual energy consumption were compared with the energy performance standard of the office buildings in the CBECS database, ASHRAE Standard 90.1-2004 and Building Energy Efficiency Rating System in Korea. Result: The order of the green strategies applied in the main categories are Renewable Energy(63%), Indoor Environment Control(51%), Envelope Improvement(44%) and HVAC System & Control(28%). Specified strategies most widely used in the sub-categories are high-performance Insulation (70%), High Efficiency Heating, Cooling Source Equipment(85%), Photovoltaic&Solar Thermal(80%) and Daylighting(80%).

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구)

  • 조한구;이운용;박영두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

A Study on the Window Energy Rating Systems in Residential Buildings (주거용 건물의 창호에너지평가시스템에 관한 연구)

  • Kim, Dong-Yun;Lim, Hee-Won;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.33-41
    • /
    • 2016
  • Purpose: The window energy rating system was developed in early 1990's and various kind of rating system has been implemented in advanced country such as Europe, Australia, Canada and the US since 2000. In Korea, the Energy Consumption Efficiency Rating Indication System has been implemented to promote supply of high efficiency window since July 2012. Normally, the window energy rating system based on heat balance which considers both thermal losses and solar heat gain is used and applied only to residential buildings. However, the system used nationally only considers thermal losses and is applied to every building regardless of its usage. Therefore, in this study, we indicated problems of domestic window energy rating system and looked for improvements. Method: We analyzed thermal performance of various windows through dynamic simulation applied to detached house and compared results with those of domestic and foreign rating system. Result : Thermal performance of south windows is more affected by SHGC than U-value, and that of north windows is also affected by SHGC a lot. The difference between the results of our study and current system is statistically significant. As a result, appropriate evaluation criteria which considers solar heat gain is required.

Effects of Various Factors on the Energy Consumption of Korean-Style Apartment Houses (한국형 아파트의 냉난방 에너지에 미치는 제 인자의 영향)

  • 유호선;현석균;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.972-980
    • /
    • 2002
  • This work is aimed at estimating the effects of various factors on the energy consumption of Korean-style apartment houses using TRNSYS. The factors considered here include the nominal size of floor area, type of remodeling, azimuth, sidewall insulation, and window type. Based on some assumptions, an actual apartment house is simplified into a model that is used for thermal load calculations. The simplified model is validated by showing a good agreement with the actual one in the predicted result. Remodeling balconies into unconditioned buffer spaces yields a favorable thermal performance in comparison with the original type regardless of the nominal size. Incorporating balconies into a conditioned indoor space leads to sharp increases in thermal loads, which must be avoided in view of energy conservation as well as structural problem. A quantitative assessment on the azimuthal effect indicates that the heating energy can be saved up to 16% by taking the south or southeast direction. Reduction in the heating load with enhancing the sidewall insulation is gradual, so that a cost-effectiveness analysis may be needed when amending the regulations concerned. Glazing appears to significantly affect the heat transfer through window. A typical case illustrates that the heating load is decreased about 25% by simply adopting triple glazing instead of double glazing.

A Study on the Thermal Load Patterns for a Exterior Wall in a House According to a Variation of Earth Sheltering Thickness (복토 주택의 외벽면 복토 두께 변화에 따른 열부하 패턴에 관한 연구)

  • Lee, Jae-Hyuk;Choi, Won-Ki;Suh, Seung-Jik;Cho, Dong-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.807-812
    • /
    • 2008
  • The various attempts is made to solve the energy and environment problems. In addition, people interested in their life quality want the more eco-friendly living space. So we suggested that the earth-sheltered house could be one of the eco-friendly and low energy consuming houses to meet the social interest. And we also made data for design of the earth-sheltered house to be applicable to climate of Korea. In this study, a simulation was performed to estimate a boundary temperature according to earth sheltering thickness at the earth-sheltered part(exterior wall) in the case of earth sheltering on the plane ground not using a sloped site. And we analyzed the reduction of a thermal load by using this boundary temperature. We also compared a case of earth sheltering at the vertical wall with a case of earth sheltering at the roof to know the thermal reduction effect of a case of earth sheltering at the vertical wall.

  • PDF