• Title/Summary/Keyword: Building Load

Search Result 2,186, Processing Time 0.028 seconds

Heating and Cooling Load of Building according to Atrium Layout

  • Jeong, Nam-Young;Lee, Ji-Young;Chae, Young Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Purpose: The purpose of this study is to present basic data which would be applied on the early stage of the architectural design. And that determines the introduction of the atrium by comparing and analysing the environmental performance of atrium building. Method: The building forms are classified into low storied building, middle storied building and high storied building. This study compares and analyses energy performance of the standard building without atrium and the atrium building which has one-side, two-side, three-side, four-side, and linear atrium by measuring of annual heating and cooling load with EnergyPlus. Result: As a result of the analysis of the relative annual heating and cooling load by building type, it is shown that the fluctuation of cooling load in low storied building is large because heat storage in atrium affects building, and the fluctuation of heating load in high storied building is large owing to the effect of external wall area of atrium which makes heat loss. Especially, it indicated the largest annual heating and cooling load in four-side atrium of low storied building, and in one-side atrium of high storied building.

Survey on Building Owner's Awareness of Building Energy Load (건물주의 건축물 에너지 부하량 인식 조사)

  • Yeo, Chang-Jae;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.292-293
    • /
    • 2014
  • Many project (such ESCO or BRP) are being implemented for existing building energy saving. Most of medium or large building that use many energy being implemented this project. In the case of large or medium building must implement obligatorily Energy auditing. Therefore, They can be recognize their building energy consumption situation. But, In the case of small building don't need obligatorily energy auditing. Therefore, They can't be recognize their building energy consumption situation. As a result, Small buildings are difficult to participate in energy efficiency retrofit. In this research, Building owners of buildings energy load recognition and energy efficiency retrofit possible participation was analysis though survey. Survey results, Most building owners don't know building energy load. But they have a good mind to retrofit building energy efficiency. As a result, If they have energy load information, they will be participate energy efficiency retrofit.

  • PDF

A Building Heating and Cooling Load Analysis of Super Tall Building considering the Vertical Micro-climate Change (초고층 오피스 건물의 수직외부환경 변화가 건물부하에 미치는 영향)

  • Kim, Yang-su;Song, Doosam;Hwang, Suk-Ho
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In these days numerous super tall buildings are under construction or being planned in Middle East and Asian countries. Some of them are planned as an ultra high-rise building that goes over 600m tall, including Burj Khalifa, the tallest building in the world. External environment such as wind speed, temperature and humidity of the super tall building varies due to its vertical height. Therefore, it is necessary to consider these environmental changes to estimate building heating and cooling load. This paper analyzes how vertical microclimate difference affects building heating and cooling load in super tall building by simulation using radiosonde climate data. Besides, the correlation between air-tightness of building envelope and building load was analyzed for a super tall building.

Study on the Annual Building Load Predicting Method using a Polynomial Function (다항함수를 이용한 건물의 연간부하 예측 방법에 관한 연구)

  • Yun, Hi-won;Choi, Seung-Hyuck;Ryu, Hyung-Kyou
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • In order to use and manage the building energy efficiently, it is necessary to minimize building energy consumptions, and establish operation plans of various equipment. The maximum heating and cooling load calculation is an essential way in various equipment selections, and the annual building load calculation is used in forecasting & evaluating the LCC required for operation plan. In this study, noting that the annual building load changes depending on outside temperature around year, we propose a predicting method of annual building load. By using the $4^{th}$ polynomial function that have two double radix and a feature the $f(x)=a^4$ in x = 0 condition, we can calculate annual building load very easily only with the two result (maximum heating and cooling load) and a minimum parameters.

Thermal Load Simulation Analysis on Model Building Estimating Optimum Heat Source Capacity (최적 열원용량 산정을 위한 모델건물 공조부하 시뮬레이션 분석)

  • Park, Jong-Il;Kim, Se-Hwan;Lee, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.427-433
    • /
    • 2007
  • Generally, H.V.A.C load capacity in early planning phase can presume with maximum thermal load. Basic data can prove by air conditioning equipment system data analysis at existing building. There are poor and not reliable alternative presentation. In this paper, measured data after use H.V.A.C load calculation K-load program reply choosing standard building and variables simulation. And I founded peak load correlation graph and mode for several kinds of variable and contents of size. I wish that equipment designer is beaconed to produce optimum capacity at building as quantitative through this result.

Proposal of Unit Building Method for Calculating Unit Heating Load of Apartment Houses (공동주택 단위난방부하 계산을 위한 단위동법 제안)

  • Yoo Ho-Seon;Chung Joo-Hyuk;Moon Jung -Hwan;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.68-76
    • /
    • 2007
  • As an alternative approach to evaluate the unit heating load for apartment houses, we newly developed and proposed unit building method. The new method, which calculates the heating load of an apartment building as a whole, conceptually corresponds to integral analysis of building heat loss, while the existing unit apartment method to differential analysis. Four typical building models of Korean-style apartment house and two dynamic load calculation programs were selected to validate the present method under realistically imposed conditions. Eight sets of unit heating load calculated respectively by unit building and unit apartment methods showed excellent agreements regardless of building model and simulation program. It is expected that the unit building method can take the place of the unit apartment method due to fewer modeling assumptions as well as less computational efforts. Additional calculations to investigate the effects of various parameters on unit heating load yield good consistencies with known facts, and re-confirm the validity.

Time Dependent Thermal Load Analysis of the Building with an Airflow Window System (공기식 집열창 시스템이 설치된 건물의 동적부하 해석)

  • Cho, S.H.;Park, S.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.82-95
    • /
    • 1992
  • It has been known that the application of an airflow window system reduces the energy consumption compared with conventional double pane window in a building. But how to analyze thermal load in a building with an airflow window system has not been well known. so two kinds of method (Mode 1 and Mode 2) to analyze time dependent thermal load of the building with an airflow window system are presented in this study. The results of load analysis about the model building(total area : $4521m^2$, 3 floors) by Mode 2 show that the maximum cooling and heating load in a building with an airflow window system are decreased about 12-17% and about 19.5% than with double pane glass window, and yearly energy consumption with an airflow window system is saved about about 20% than with double pane glass window.

  • PDF

An Analysis on Building Energy Load along Core Position, Area Ratio and Orientation (코어 위치와 종횡비 및 방위에 따른 건물 에너지 부하 분석)

  • Kim, Jin-Ho;Park, Woo-Pyoung;Shin, Seung-Ho;Min, Joon-Ki;Kim, Dong-Hoon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • In this Study, effect of core position, area ratio and orientation of building on energy load is examined using TRNSYS17. This parameters are major parameters of the conceptual design stage. Reference model is square floor plan($1,444m^2$), centered core and 29% core area ratio. As the results, without considering the building orientation, the annual heating load of central building with 1:1 area ratio is lowest ($10.33kWh/m^2yr$) and the annual cooling load of off-central building with 1:1 area ratio is lowest ($59.27kWh/m^2yr$). As area ratio is bigger, cooling load is lower and heating load is higher. But if we consider building orientation, orders of heating load and cooling load are changed for area ratio and orientation.

The Study of Load Test Method for In-Site Casting Pile In High Rise Building. (초고층에서의 현장타설말뚝 재하시험방법 고찰)

  • Kim, Dae-Hak;Hong, Young-Kil;Han, Sung-Moo;Gu, Ung-Hwoe;Park, Chan-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.385-392
    • /
    • 2008
  • Modern city have had a lot of high-rise building in high standards and multi-level performance. Using of city space reach better stages by using integration. These skyscraper have increased working load on ground. that building is efficiently designed for that soil capacity is well applied. With material side, big size pile, high strength concrete and high strength steel is used for that getting enough lobby space and resisting load increased of high-rise building. limit load test and load transmitted test can make soil capacity optimized. By the way, method of measuring pile capacity is more advanced and bigger. pile type applied by high rise building have underground excavation space, also reflect regional soil property and have some fact reviewed. A lot of high rise building recently is built as land mark in Seoul, Busan and Incheon. about method of measuring capacity of foundation pile, example of construction field is compared and reviewed.

  • PDF

Evaluation on Reducing Peak Cooling Load Based on Dynamic Load Model of Building Perimeter Zones (건물의 외주부 존에 대한 동적 부하모델 이용 피크냉방부하 저감효과 분석)

  • Lee, Kyoung-Ho;Brau, James E.
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, inverse building modeling was applied to building perimeter zones which have different window orientation. Two test zones of east-facing and west-facing zones in ERS(Energy Resource Station) building, which is representative of small commercial building, was used to test performance of cooling load calculation and peak cooling load reduction. The dynamic thermal load model for the east and west zone was validated using measured data for the zones and then it was used to investigate the effect of peak cooling load reduction by adjustment of indoor cooling temperature set points during on-peak time period. For the east zone, the peak load can be reduced to about 60% of the peak load for conventional control even without any precooling. For the west zone, PLR is nearly independent of the start of the on-peak period until a start time of 1pm. Furthermore, PLR has a small dependence on the precooling duration. Without any precooling, the peak cooling load can be reduced to about 35% of the peak load associated with conventional control.