• Title/Summary/Keyword: Building Layer

Search Result 807, Processing Time 0.026 seconds

Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU

  • Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-300
    • /
    • 2011
  • Researchers at the International Hurricane Research Center (IHRC), Florida International University (FIU), are working in stages on the construction of a large state-of-the-art Wall of Wind (WoW) facility to support research in the area of Wind Engineering. In this paper, the challenges of simulating hurricane winds for the WoW are presented and investigated based on a scale model study. Three wind profiles were simulated using airfoils, and/or adjustable planks mechanism with and without grids. Evaluations of flow characteristics were performed in order to enhance the WoW's flow simulation capabilities. Characteristics of the simulated wind fields are compared to the results obtained from a study using computational fluid dynamics (CFD) and also validated via pressure measurements on small-scale models of the Silsoe cube building. Optimal scale of the test model and its optimal distance from the WoW contraction exit are determined - which are two important aspects for testing using an open jet facility such as the WoW. The main objective of this study is to further the understanding of the WoW capabilities and the characteristics of its test section by means of intensive tests and validations at small scale in order to apply this knowledge to the design of the full-scale WoW and for future wind engineering testing.

A proposed technique for determining aerodynamic pressures on residential homes

  • Fu, Tuan-Chun;Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Yeo, DongHun;Simiu, Emil
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.27-41
    • /
    • 2012
  • Wind loads on low-rise buildings in general and residential homes in particular can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. The imperfect spatial coherence of the low frequency velocity fluctuations results in reductions of the overall wind effects with respect to the case of perfectly coherent flows. For large buildings those reductions are significant. However, for buildings with sufficiently small dimensions (e.g., residential homes) the reductions are relatively small. A technique is proposed for simulating the effect of low-frequency flow fluctuations on such buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. Experimental results are presented that validate the proposed technique. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories. In addition, the technique allows the use of considerably larger model scales than are possible in conventional testing. This makes it possible to model architectural details, and improves Reynolds number similarity. The technique is applicable to wind tunnels and large scale open jet facilities, and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. The work reported in this paper is a first step in developing the proposed technique. Additional tests are planned to further refine the technique and test the range of its applicability.

The Study on Simplification in Digital Map Generalization (수치지도 일반화에 있어서 단순화에 관한 연구)

  • 최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.199-208
    • /
    • 2001
  • The digital map in Korea has been producted and utilized independently according to scales such as 1:1,000, 1:5,000, and 1:25,000. Therefore, whenever we need to obtain the spatial data of other scales, we have to product the digital maps over and over again which it is time-consuming and ineconomic. To solve these problems, it has been accomplished many researches on map generalization to make digital maps in small scale from the master data of large scale. This paper aims to analyze the conversion characteristics of the large scale to the small scale by simplification of map generalization. For this purpose, it is proposed the algorithm for the simplification process of digital map and it is investigated the simplification characteristic of digital map through the experiment on the conversion of 1:5,000 scale into 1:25.000 scale. The results show that Area-Preservation algorithm indicates the good agreement with the original data in terms of the area and features of building layer compared to Douglas-Peucker algorithm and Reumann-Witkam algorithm.

  • PDF

Finite Element Analysis of Gas Pipelines Depend on the Arctic of Active Region (극한지 활동층 변화에 따른 천연가스배관의 유한요소해석)

  • Yeom, Kyu Jung;Kim, Kyung Il;Kim, Young-Pyo;Oh, Kyu Hwan;Kim, Woo Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.72-77
    • /
    • 2014
  • It is known that there is no demand for building the arctic environment in Korea. However, it is important to use the different energy source instead of fuel source due to global warming. It is now demanded of using gas of Alaska and Siberia for long term developing the natural gas. The design of gas pipelines in Korea is very different from the arctic region. The operation of gas in arctic region have to consider of arctic region such as permafrost and active regions. It is needed to understand of gas pipeline design with different arctic soil properties. Nowadays, the pipelines is designed with stress-based and but there is demanded for strain based design with more deformed pipeline. We study of arctic environment with different active region using Finite Element Method of thermal elasto-plastic analysis.

Heating and Cooling Energy Demand Analysis of Standard Rural House Models (농어촌 주택 표준모델의 냉난방에너지요구량 분석)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3307-3314
    • /
    • 2012
  • The annual energy demand of the standard rural house models was analyzed using the DesignBuilder. Indoor temperature set-point, U-value of outer wall, type of window, and degree of ventilation were selected as simulation parameters. In all the simulation cases, heating energy demand was higher than cooling energy demand regardless of the building size. When the lower U-value of the outer wall was applied to account for the thicker insulation layer, heating energy demand was decreased while cooling energy demand was increased. However, it is better to reduce the area of outer wall which is directly exposed to outdoor air because reducing the U-value of the outer wall is not effective in decreasing heating energy demand. Among the four different window types, the double skin window is most favorable because heating energy demand is the lowest. For a fixed infiltration rate, higher ventilation rate resulted in an increased heating energy demand and had minor impact on cooling energy demand. As long as the indoor air quality is acceptable, lower ventilation rate is favorable to reduce the annual energy demand.

Cyclic behaviour and modelling of stainless-clad bimetallic steels with various clad ratios

  • Liu, Xinpei;Ban, Huiyong;Zhu, Juncheng;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.189-213
    • /
    • 2020
  • Stainless-clad (SC) bimetallic steels that are manufactured by metallurgically bonding stainless steels as cladding metal and conventional mild steels as substrate metal, are kind of advanced steel plate products. Such advanced composite steels are gaining increasingly widespread usage in a range of engineering structures and have great potential to be used extensively for large civil and building infrastructures. Unfortunately, research work on the SC bimetallic steels from material level to structural design level for the applications in structural engineering field is very limited. Therefore, the aim of this paper is to investigate the material behaviour of the SC bimetallic steels under the cyclic loading which structural steels usually could encounter in seismic scenario. A number of SC bimetallic steel coupon specimens are tested under monotonic and cyclic loadings. The experimental monotonic and cyclic stress-strain curves of the SC bimetallic steels are obtained and analysed. The effects of the clad ratio that is defined as the ratio of the thickness of cladding layer to the total thickness of SC bimetallic steel plate on the monotonic and cyclic behaviour of the SC bimetallic steels are studied. Based on the experimental observations, a cyclic constitutive model with combined hardening criterion is recommended for numerical simulation of the cyclic behaviour of the SC bimetallic steels. The parameters of the constitutive model for the SC bimetallic steels with various clad ratios are calibrated. The research outcome presented in this paper may provide essential reference for further seismic analysis of structures fabricated from the SC bimetallic steels.

A Study on Cementation Reaction Mechanism for Weathered Granite Soil and Microbial Mixtures (화강풍화토와 미생물 혼합물의 고결 반응 메카니즘)

  • Oh, Jongshin;Lee, Sungyeol;Kim, Jinyung;Kwon, Sungjin;Jung, Changsung;Lee, Jaesoo;Lee, Jeonghoon;Ko, Hwabin;Baek, Wonjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.103-110
    • /
    • 2019
  • The purpose of this study is to investigate the reaction mechanism of soil and bacteria solution by various mixing ratios. For this purpose, in order to understand the reaction mechanisms of microorganisms and weathered granite soil, the tests were carried out under various mixing ratios additives such as soil, bacteria solution, $Ca(OH)_2$ and fixture. The test results from this study are summarized as follows. Firstly, the reaction between the bacteria solution and fixture produced a precipitate called vaterite, a type of silicate and calcium carbonate. Secondly, as a result of SEM analysis, the resulting precipitates generated from the test results using the specimens with various mixing ratios except SW condition and the irregular spherical microscopic shapes were formed in the size of $150{\mu}m$ to $20{\mu}m$. In addition, it can be seen that the bacteria solution and the fixture reacted between the granules to form an adsorbent material layer on the surface, and the microorganisms had a biological solidifying effect when the pores are combined into hard particles. Finally, The XRD analysis of the sediment resulting from the reaction between the microorganism and the deposit control agent confirmed the presence of a type of calcium carbonate ($CaCO_3$) vaterite, which affects soil strength formation, as well as silicate($SiO_2$).

The Design and Practice of Disaster Response RL Environment Using Dimension Reduction Method for Training Performance Enhancement (학습 성능 향상을 위한 차원 축소 기법 기반 재난 시뮬레이션 강화학습 환경 구성 및 활용)

  • Yeo, Sangho;Lee, Seungjun;Oh, Sangyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.263-270
    • /
    • 2021
  • Reinforcement learning(RL) is the method to find an optimal policy through training. and it is one of popular methods for solving lifesaving and disaster response problems effectively. However, the conventional reinforcement learning method for disaster response utilizes either simple environment such as. grid and graph or a self-developed environment that are hard to verify the practical effectiveness. In this paper, we propose the design of a disaster response RL environment which utilizes the detailed property information of the disaster simulation in order to utilize the reinforcement learning method in the real world. For the RL environment, we design and build the reinforcement learning communication as well as the interface between the RL agent and the disaster simulation. Also, we apply the dimension reduction method for converting non-image feature vectors into image format which is effectively utilized with convolution layer to utilize the high-dimensional and detailed property of the disaster simulation. To verify the effectiveness of our proposed method, we conducted empirical evaluations and it shows that our proposed method outperformed conventional methods in the building fire damage.

Measurement of LPWA communication coverage in NLOS environment (NLOS 환경에서 LPWA 통신 커버리지 측정)

  • Kwon, Hyuk;Jin, Kyoung-Bog;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.591-593
    • /
    • 2019
  • LPWA has a small amount of data that can be transmitted at one time, but it can collect a very wide range of information, so it is suitable for gathering information of apartment meter or collecting data intermittently sent from industrial site. However, most of the application studies on LPWA are limited to outdoor, especially LOS environment, so it is difficult to collect information for application to apartment and industrial sites. In this paper, we have measured the communication coverage within the building, which is a NLOS environment, so that LPWA communication can be applied to apartments and industrial sites. For the experiment, LoRa module was created using sx1276, Class A was applied, and the spread factor was changed for each layer. As a result, in case of spreading factor 7 that shows increasing error and losses from the 7 floor, but the in case of spreading factor 12, the data could be seamlessly received even on the 9th floor without error and losses.

  • PDF

A Study on the Evaluation of Bird Habitat Environment in Gyeongchun Line Forest Road (경춘선 숲길의 조류 서식환경 평가 연구)

  • Kim, Mi-Hu;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.167-185
    • /
    • 2020
  • The purpose of this study is to prepare a plan for improving the bird habitat environment of Linear Park. To this end, after grasping the status of bird habitats on the Gyeongchun Line Forest Road, a representative linear park in Seoul, the habitat environment was evaluated and the correlation with the bird habitat was analyzed to derive a plan to improve the habitat environment. The results for correlation between diversity of birds and habitat environment were as follows. For the habitat environment inside the park, the order of positive correlation was in the order of park area (0.92), number of insect species (0.87), green area ratio (0.77), average width of linear park (0.74), Biotope area ratio (0.73), Immigration planted species (0.57). Also, for habitat environment outside the park, the bird diversity was influenced in the order of area outside the park (0.88), green area ratio of the park (0.76). Thus, in order to enhance the diversity of birds found in the park, the bird habitat environment inside the park needs to expand the park area, secure insect diversity, enhance green area ratio and ecological area ratio, expand the width of linear park, and lower the impermeable layer. For the bird habitat environment outside the park, wider area, green area ratio, and forest area of the park influenced on better bird habitation while lower ratio of road space and building-to-land ratio influenced on higher bird diversity. It is necessary to create an environment inhabitable for various species of birds and to make a healthy and pleasant city urban system for co-existence of human and living creatures.