• Title/Summary/Keyword: Building Integrated PV

Search Result 115, Processing Time 0.016 seconds

The Characteristics on CIGS Thin Film PV Module for Curtain Wall Spandrel Applications (커튼월 스팬드럴 적용을 위한 CIGS 박막 모듈의 특성 분석 연구)

  • Kang, Jun-Gu;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2013
  • In this study, three different types of experimental models of BIPV curtain wall units with GIGS modules were built, and their thermal and electrical performances were analyzed. The experimental results showed that the temperature of the rear side of the GIGS module with the application of an insulation in the curtain wall spandrels was higher than a GIGS module standalone by $22^{\circ}C$, which results in a reduction in the power generation of the former by 8 %. On the other hand, when ventilation was applied to the model to improve the power generation performance, the module temperature was observed to be $142^{\circ}C$ lower compared to the enclosed type, and the power generation performance improved by 5 %. It confirmed that the temperature increase in the rear side of the GIGS module with insulation layer reduced the electrical performance of the module. Based on this, it is claimed that providing sufficient ventilation at the GIGS applied spandrels contribute to improve the power generation of the GIGS module.

Analysis of Power Characteristics of High-Power Shingled Photovoltaic Module with Color Application (고출력 슁글드 태양광 모듈 컬러 적용에 따른 출력 특성 분석)

  • Kim, Juhwi;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.73-76
    • /
    • 2022
  • BIPV (Building Integrated Photovoltaic) supplemented the minimum area problem required when installing existing solar modules. However, in order to apply it to buildings, research was needed to increase the aesthetics of solar modules and use them as a design. Accordingly, modules with color applied to the entire surface of the photovoltaic module were being developed, but there was a disadvantage of low power. Therefore, by dividing and bonding the cell strips, it was possible to improve the output power by applying a shingled technology in which other divided cells overlap in a busbar region where light couldn't be received. Shingled technology was advantageous for color modules because the front busbar part that degrades aesthetics was removed. In this research, four color shingled solar modules (Green, Yellow, Blue, Gray) were manufactured and power degradation was analyzed by measuring transmittance and reflectance. Gray color had 80.83% transmittance, which was 31.31% higher than Yellow, resulting in a power difference of 4.45 W.

Photovoltaic Application in System Formwork Operations of High-rise Building Construction (초고층 시스템거푸집 공사의 태양광에너지 활용 방안 연구)

  • Kim, Tae-Hoon;Lee, Myung-Do;Lee, Ung-Kyun;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2011
  • Recently, eco-friendly energy has been employed in diverse fields of industry in order to reduce environmental pollution and secure a new growth engine. In particular, practical applications of photovoltaic energy, such as building integrated photovoltaic systems, have been implemented to the construction industry based on the extensive interest in photovoltaic power as an unlimited and sustainable energy. While the construction of a high-rise building requires large amounts of energy, methods of reducing energy consumption in the construction phase have rarely been studied. Based on this motivation, the research proposes a photovoltaic based formwork system (PVFS), and then performs a design and feasibility analysis for its application to the construction of a high-rise building. Using a case study, the research implements various analyses, including area, position, and total allowable weight required by PVFS, and evaluates the influences of PVFS on the construction processes, as well as its economic feasibility. The proposed PVFS can be adopted to a real-world project in the near future, depending on the advancement of technology and economic feasibility. The results of this research will contribute to establishing a construction environment that promotes a reduction of energy consumption by using eco-friendly energy in the construction phase.

The Simplified Pre-Estimation Model Development of a BIPV Generation Rate by the District Division (지역 구분을 통한 약식 BIPV 발전량 예측 모델 개발)

  • Choi, Won-Ki;Oh, Min-Seok;Shin, Woo-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.19-29
    • /
    • 2016
  • Whilst there are growing interests in pursuing energy efficiency and zero-energy buildings in built environment, it is widely recognised that Building-Integrated Photovoltaic (BIPV) is one of the most promising and required technologies to achieve these goals in recent years. Although BIPV is a broadly utilized technique in variety of fields in built environments, it is required that generation of BIVP should be analysed and calculated by external specialists. The aim of this research is to focus on developing a new diagram for prediction of the pre-estimation model in early design stage to harness solar radiation data, PV types, slopes, azimuth and so forth. The results of this study show as follows: 1) We analysed 162 districts in a national level and the examined areas were categorised into five zones. The standard deviation of the results was 2.9 per cent; 2) The increased value of solar radiation on a vertical plane in five categorised zones was 42kWh/m3, and the result was similar to the average value of 43.8kWh/m3; and 3) The pre-estimation of diagram was developed based on the categorisation of zones and azimuth as well as the results of the developed diagram showed little difference compared to the previously utilised method. The suggested diagram in this paper will contribute to estimate BIPV without any external contribution to calculate the value. Even though the result of this study shows little difference, it is required to investigate a number of different variables such as BIPV types, modules, slope angle and so forth in order to develop an integrated pre-estimation diagram.

A Study on the Durability Complement of Lightweight Photovoltaic Module (경량화 태양광 모듈의 내구성 보완에 관한 연구)

  • Jeong, Taewung;Park, Min-Joon;Kim, Hanjun;Song, Jinho;Moon, Daehan;Hong, Kuen Kee;Jeong, Chaehwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.