• 제목/요약/키워드: Building Frame System

검색결과 415건 처리시간 0.023초

고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화 (Structural Cost Optimization for Building Frame System Using High-Strength Steel Members)

  • 최상현;권봉근;김상범;서지현;권윤한;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF

Progressive collapse analysis of two existing steel buildings using a linear static procedure

  • JalaliLarijani, Reza;Celikag, Murude;Aghayan, Iman;Kazemi, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제48권2호
    • /
    • pp.207-220
    • /
    • 2013
  • In this study, the vulnerability of two existing asymmetric steel building frames to Progressive Collapse (PC) is assessed. The buildings have different frame systems, steel sections and number of stories (nine and six). An alternate path method (APM) with a linear static analysis (LS) is carried out according to General Services Administration (GSA) 2003 guidelines. The Demand Capacity Ratio (DCR) of each primary element (beams and columns) is given with its specific details for all frames. The results show that the nine-story building with a dual frame system (moment frame with bracing system) has a lower susceptibility and greater resistance to PC than the six-story building with a simple building frame system (gravity system with bracing system). Implementing built-up box-shaped sections for columns is a better choice than using built-up I-shaped sections because there is no weak axis for the box section.

Challenge in the Structural Design of Suzhou IFS

  • Zhou, Jianlong;Huang, Yongqiang
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.165-171
    • /
    • 2021
  • Core-outrigger-mega frame system is used in Suzhou IFS with 95-story, 450 m-tall, which is beyond Chinese code limit. Besides simple introduction on design principle, structure system and analysis, key techniques including performance based design criteria, frame shear ratio, capacity check of mega column, human comfort criteria under wind induced vibration and TSD design were presented in details for reference of similar super tall building design.

고층 RC 건물골조시스템의 내진설계상 몇 가지 주요 문제점 (Some Critical Problems in Seismic Design of High-Rise RC Building frame Systems)

  • 이한선;정성욱;고동우
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.727-734
    • /
    • 2005
  • 최근 증가하고 있는 초고층 주거용 구조물 중 많은 수가 건축적인 이유로 인해 건물골조시스템을 주요 지진저항시스템으로 채택하고 있다. 그러나 KBC 2005를 적용하여 건물골조시스템을 설계할 때 기준에서 언급되지 않거나 모호한 표현으로 인해 설계자는 많은 어려움을 겪을 수 있다. 특히 정적$\cdot$동적 해석시 RC부재의 균열단면을 고려한 유효강성의 적용 방법, 변형 적합성을 고려한 골조의 설계법 등에서 어려움을 겪을 수 있다. 이에 대하여 전단벽과 골조(플랫 플레이트)로 이루어진 전형적인 건물골조시스템의 건물에 대해 KBC 2005를 적용하고 기준의 불명확한 부분에 대해서 여러 방법을 적용하여 해석한 결과 기준의 모호한 언급이나 설계자의 임의의 판단으로 인해 층간변위비, 전단벽 및 연결보의 요구강도 등에서 매우 큰 차이가 발생하였으며, 동일한 건물을 이중골조시스템으로 설계한 경우에 비해 건물골조시스템으로 설계한 경우 변형 적합성의 요구로 인해 전단벽의 높은 요구강도 뿐만 아니라 골조에서도 높은 연성이 요구되었다.

초고층 건물골조 시스템의 내진설계상 문제점 (Problems in Seismic Design of High-Rise RC Building Frame Systems)

  • 이한선;정성욱;고동우
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.195-202
    • /
    • 2005
  • High-rise residential buildings in these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes, with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio and, deformation compatibility requirements of frames. The comparative study for these issues by appling IBC 2000 and KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on designer's interpretation and application of code requirements.

  • PDF

프레임의 강성을 고려한 최적 아웃리거 위치의 제안 (Proposal for Optimal Outrigger Location Considering Stiffness of Frame)

  • 김형기
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.183-190
    • /
    • 2019
  • This paper intended to propose the optimal outrigger position in tall building. For this purpose, a schematic structure design of 70 stories building was accomplished by using MIDAS-Gen. In this analysis research, the key variables were the stiffness of outrigger, the stiffness of frame, the stiffness of shear wall, the stiffness of exterior column connected in outrigger and the outrigger location in height. With the intention of looking for the optimum location of outrigger system in high-rise building, we investigated the lateral displacement in top floor. The study proposed the new method to predict the optimal location of outrigger system considering the frame stiffness. And it is verified that the paper results can be helpful in providing the important engineering materials for finding out the optimum outrigger position in tall building.

FRP자켓 시스템이 보강된 비내진 철근콘크리트 골조의 실물 크기 강제 진동 실험 (Forced Vibration Testing of Full-scale Non-seismic Reinforced Concrete Frame Structure Retrofitted Using FRP Jacketing System)

  • 신지욱
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.281-289
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.

우리나라의 주택시장구조(住宅市長構造)와 목조주택개발(木造住宅開發) (Housing Market and Opportunities for Wood Frame Housing in Korea)

  • 박문재;김외정;한갑준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제19권3호
    • /
    • pp.45-52
    • /
    • 1991
  • To investigate opportunities for wood frame housing and to activate wood frame house construction, trends of construction activities. preference about housing, and building codes related to wood frame housing were discussed. And two models of wood frame house were developed and construction cost was analyzed to compare with comparative masonry houses. The results obtained were as follows: 1. While 77.8% of people prefer single-family houses, majority of people(74.9%), ironically, possess multi-family houses such as apartments Wood work cost was ratio of 4% of total building cost. while wood material cost accounted merely for 11 % out of total building material cost. 2. Building code was not major barrier to residential house at height under 13m. The building code regulated major structural member and family boder wall of multi-family house to be built with fire retardant material. 3. The proper wood frame house was analyzed of town house or villa type locating in suburban of big city with hot ondol system for the upper middle class. 4 There was no difference in construction cost between western style wood frame house and comparable masonry house, but construction cost for Korean style wood frame house is 27% higher than that of comparable masonry house. It was necessary to reduce materials and cost down by prefabrication technique for both style of wood frame house.

  • PDF

Seismic response analysis of RC frame core-tube building with self-centering braces

  • Xu, Long-He;Xiao, Shui-Jing;Lu, Xiao
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.189-204
    • /
    • 2018
  • This paper examines the seismic responses of a reinforced concrete (RC) frame core-tube building with pre-pressed spring self-centering energy dissipation (PS-SCED) braces. The PS-SCED brace system consists of friction devices for energy dissipation, pre-pressed combination disc springs for self-centering and tube members as guiding elements. A constitutive model of self-centering flag-shaped hysteresis for PS-SCED brace is developed to better simulate the seismic responses of the RC frame core-tube building with PS-SCED braces, which is also verified by the tests of two braces under low cyclic reversed loading. Results indicate that the self-centering and energy dissipation capabilities are well predicted by the proposed constitutive model of the PS-SCED brace. The structure with PS-SCED braces presents similar peak story drift ratio, smaller peak acceleration, smaller base shear force and much smaller residual deformations as compared to the RC frame core-tube building with bucking-restrained braces (BRBs).

내진특수상세를 적용한 RC 이중골조 건물의 설계 (Design of RC dual system building using special seismic detail)

  • 이한선;고동우;선성민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.190-193
    • /
    • 2006
  • The definition of the Dual system is that the total seismic force resistance is to be provided by the combination of the moment frame and the shear walls or braced frames in proportion to their stiffness and the moment frame shall be capable of resisting at least 25% of the design force in Korean Building Code 2005 (KBC 2005). But, the definition of moment frame is ambiguous whether the moment frame include the imaginary columns in the shear wall (Case I) or include only the columns outside the shear wall (Case II). 60-story RC building was designed as dual system for Case I and Case II, and the required strength and reinforcement are compared. Moment and axial capacity of the shear wall of Case II decreased about 5% due to the absence of the column in the shear wall. The requirement of upper and bottom reinforcement of slab in Case II increased 13% and 40%, respectively, when compared to those of Case I. The required longitudinal reinforcement in columns for Case II is about 1.5 times larger than that of Case I.

  • PDF