• Title/Summary/Keyword: Building Energy Performance Analysis

Search Result 567, Processing Time 0.025 seconds

Energy Performance Evaluation of A Primary School Building for Zero Energy School (제로에너지 스쿨을 위한 초등 교육시설의 에너지 성능평가)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Park, Jae-Wan;Kim, Hyo-Jung;Lee, Chul-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-126
    • /
    • 2009
  • This study analyzed the standard school's energy usage and patterns as the zero-energy goal of primary school building, and proposed the energy reduction process of school building using energy analysis computing simulation tool. As a analysis simulation tool, Visual DOE 4.0 is used. For analysis of actual energy usage, selected primary school that is standard in the nation's energy consumption. Standard of the school's energy consumption analysis were devided into electric and gas energy. Input parameters of the simulation program based on the literature material and field survey material. after, but it was calibrated to comparison with the standard school's energy consumption. Finally, its energy usage analyzed by component and made the priority order of energy saving. Applied energy saving technologies are envelopment insulation, high efficiency lighting, high performance HAVC system and used active equipment system of solar collector and photovoltaic generation for additional savings.

  • PDF

A Study on the Performance Increase in Building Energy Technology according to the Korea's Zero Energy Building Policy (한국의 제로에너지건축 정책 추진에 따른 건축물 에너지기술 성능 연구)

  • Shim, Hong-Souk;Lee, Sungjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.543-553
    • /
    • 2021
  • As a key policy for achieving the goal of reducing GHG in the building sector, Korea has enforced the mandatory certification of zero-energy buildings for new buildings in the public sector from 2020. This study evaluated a policy to achieve Net Zero by identifying the trend of changes in building energy performance according to policy and presenting a methodology to analyze the current performance state of energy technology applied to buildings. The final goal was to help stakeholders apply appropriate energy technologies for new buildings. For this study, data collected on building energy efficiency certification over the last four years have shown a gradual increase in energy performance. In addition, K-means cluster analysis was used to analyze the performance status of energy technologies applied to buildings. The high and low clusters of education and office facilities were used to analyze the comparative group (2016-2020, 2020). As a result, the solar module area in both high and low clusters of education facilities increased by 261.1% and 283.5%. In contrast, the solar module area decreased by both high and low clusters of office facilities. The most passive and active technologies showed an increase in energy performance.

Rational Building Energy Assessment using Global Sensitivity Analysis (전역 민감도 분석을 이용한 건물 에너지 성능평가의 합리적 개선)

  • Yoo, Young-Seo;Yi, Dong-Hyuk;Kim, Sun-Sook;Park, Cheol-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.177-185
    • /
    • 2020
  • The building energy performance indicator, called Energy Performance Index (EPI), has been used for the past decades in South Korea. It has a list of design variables assigned with weighting factors (a, b). Unfortunately, the current EPI method is not performance-based but very close to a prescriptive rating. With this in mind, this study aims to propose a new performance-based EPI method. For this purpose, a global sensitivity analysis method, Sobol, is employed. The Sobol method is suitable for complex nonlinear models and can decompose all the output variance due to every input. The Sobol sensitivity index of each variable is defined as 0 to 1 (0 to 100%), and the sum of all sensitivity indices is equal to 1 (100%). In this study, an office building was modeled using EnergyPlus and then the Latin Hypercube Sampling (LHS) was conducted to generate a surrogate model to EnergyPlus. The sensitivity index was suggested to replace weight (a) in the existing EPI. In addition, the discrete weight (b) in the existing EPI was replaced by a set of continuous regression functions. Due to the introduction of the sensitivity index and the continuous regression functions, the new proposed approach can provide far more accurate outcome than the existing EPI (R2: 0.83 vs. R2: 0.01 for cooling, R2: 0.66 vs. R2: 0.01 for total energy). The new proposed approach proves to be more rational, objective and performance-based than the existing EPI method.

Energy Performance Analysis for Energy Saving Potentials of a Hospital Building : A Case Study Methodology Based on Annual Energy Demand Profiles (병원건물의 에너지 저감을 위한 에너지성능 평가에 관한 사례연구)

  • Cho, Jinkyun;Moon, Junghwan;Kang, Hosuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • Hospitals contribute to energy consumption and have a negative environmental impact. This study aims to find how meaningful energy performance, reflecting good energy management and design, can be planned for hospital buildings, a category encompassing complex buildings with different setups and large differences between them. Energy-consumption characteristics were surveyed throughout Korea to establish statistical energy models. Findings confirm that different hospital departments have hugely different energy-demand profiles. Energy efficiency and energy-saving potentials on HVAC systems are presented. The energy performance analysis can be applied to a wide range of problems in energy-system design and planning, including simulations and optimizations of community energy systems.

A Study on the Energy Performance Evaluation of Building Evaporative Cooling System for Building Construction in Response to Climate Change (기후변화 대응 저에너지 건축물 조성을 위한 건축물 기화냉각시스템 에너지성능평가 연구)

  • Kwon, Ki-Uk
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The recent climate change is exacerbating the external thermal environment and increasing the amount of energy used in building. Energy Plus was used to evaluate low energy technology performance of buildings responding to climate change. The test types of basic building(control) and evaporative mist system + basic building(EMS), and the analysis results of each type are compared. Energy performance evaluation result, Cooling peak load were EMS reduction compared to control is about 9%. Annual cooling load per unit area were EMS reduction compared to control is about 17%. Annual energy use per unit area were EMS reduction compared to control is about 10%. Therefore, the effect of the evaporative cooling system is considered to be good through energy reduction technology of building, according to the amount and distance of the evaporative mist system in the future research on building energy performance evaluation should be carried out.

Comparative analysis of Korean and foreign energy performance assessment methods for residential buildings (국내외 주거용 건물의 에너지성능 평가방법 비교분석)

  • Song, Seung-Yeoung;Koo, Bo-Kyoung;Lee, Beung-In;Song, Jin-Hee;Kim, Yeon-Hee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.191-198
    • /
    • 2009
  • Many Countries are making nationwide efforts to reduce the energy consumption which causes greenhouse gas emissions and global warming problems. Energy performance assessments and certification systems have been in force to save energy consumption of residential buildings, and are anticipated to have strong effects through the systems. Korean Building Energy Efficiency Rating System is in its early stages and is considered that the additional upgrade is needed for the accurate assessment. Thus, in this study, the assessment methods of the Building Energy Efficiency Rating System of Korea and the SAP2005 of UK were compared and energy requirements of an actual residential building were calculated with two assessment methods, respectively. The strengths and shortcomings of two systems were analyzed and a way of improving Korean system was suggested.

  • PDF

Analysis of the Building Energy Efficiency Rating Certified for Public Office Buildings (공공기관 업무용 건물의 건축물에너지효율등급 인증 현황 분석)

  • Lee, Han-Sol;Kim, Seo-Hun;Kim, Jonghun;Kim, Jun-Tae;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.75-82
    • /
    • 2015
  • Purpose: The first grade of Korea's Building Energy Efficiency Rating System(BEERS) is required for new government office buildings as a mandatory measure to reduce greenhouse gas emission. However, there is no specific criteria about performance that which level should apply to energy-saving design element for obtaining Building Energy Efficiency Rating 1st grade. Therefore, Certification status should be analyzed firstly, about the office building which is certificated. Certification analysis for office buildings acquired certification therefore should be done first. Method: In this study, Certification status(Office buildings acquired Building Energy Efficiency Rating Certification)was analyzed by classified year, region, specific scale etc. And we analyzed statistically by eliciting an average value of each element influencing to the amount of energy. Result: Energy demands were gradually decreased due to revision of thermal insulation standards for enhanced u-value. Energy consumptions were different from the kind of equipment and yearly trends applied depending on the size of the building. Total primary energy consumptions were influenced by heat source types and the primary energy scale factors.

A Study on Energy Reduction of Passive Factor Apply for the Improvement of Energy Performance in Public Building (공공기관 건물의 에너지 성능개선을 위한 패시브 요소 적용의 에너지 절감율 분석 연구)

  • Son, Ji-Hoon;Kim, Sam-Uel
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.196-201
    • /
    • 2011
  • The energy used in Korea is strongly dependent on that produced by foreign countries. Accordingly, saving energy is more important than ever, because of the rise of international oil prices and depletion of oil resources. The development of energy efficient buildings is required especially for public buildings in Korea. In this study, the energy use of public buildings is identify. Then, the analysis of energy usage through regional offices in Busan City offers energy performance for public buildings.

  • PDF

Comparison and Analysis of Domestic and Foreign Building Energy Rating Systems (국내외 건물 에너지성능 인증제도 비교, 분석)

  • Song, Seung-Yeong;Lee, Soo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.77-85
    • /
    • 2007
  • With the increase in the demand for sustainable and environment-friendly development all over the world, it becomes an urgent issue for Korea to reduce $CO_2$ emission. Since building industry accounts for about 40% of international energy and resource consumption and $30{\sim}40%$ of $CO_2$ emission, it is essential to prepare for energy-efficient building. This study aims to seek for improvement direction for a domestic Building Energy Efficiency Rating System through the comparison with foreign systems. Two foreign building energy rating systems which have the similar application scope with domestic one, HERS(Home Energy Rating System) and SAP(Standard Assessment Procedure)2005 were selected. As compared with foreign systems, we intended to suggest improvement direction for effective application of Building Energy Efficiency Rating System in Korea.

Experimental Analysis of Ventilation Effect on the Performance of Building-Integrated PV Solar Roof (건물통합형 PV Solar Roof의 통풍효과 실험분석)

  • Kim, Jin-Hee;Lee, Kang-rock;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.73-79
    • /
    • 2006
  • The integration of PV modules into building facades or roof could raise PV module temperature that results in the reduction of electrical power generation. Lowering operating temperature of PV module is important in this respect, and PV module temperature should be considered more accurately, for building-integrated PV(BIPV) systems in predicting their performance. This paper describes a BIPV solar roof design and verifies its performance through experiment In relation to the effect of ventilation in space between PV module and roof surface. The results showed that the ventilation in the space had a positive effect in lowering the module temperature of the BIPV solar roof that enhanced the performance of its electricity generation.