• Title/Summary/Keyword: Building Energy Load

Search Result 654, Processing Time 0.024 seconds

Short-term Load Forecasting of Buildings based on Artificial Neural Network and Clustering Technique

  • Ngo, Minh-Duc;Yun, Sang-Yun;Choi, Joon-Ho;Ahn, Seon-Ju
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.672-679
    • /
    • 2018
  • Recently, microgrid (MG) has been proposed as one of the most critical solutions for various energy problems. For the optimal and economic operation of MGs, it is very important to forecast the load profile. However, it is not easy to predict the load accurately since the load in a MG is small and highly variable. In this paper, we propose an artificial neural network (ANN) based method to predict the energy use in campus buildings in short-term time series from one hour up to one week. The proposed method analyzes and extracts the features from the historical data of load and temperature to generate the prediction of future energy consumption in the building based on sparsified K-means. To evaluate the performance of the proposed approach, historical load data in hourly resolution collected from the campus buildings were used. The experimental results show that the proposed approach outperforms the conventional forecasting methods.

Effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height (높이별 기상변화를 고려한 초고층 건축물의 외피종류별 냉난방 부하특성 분석)

  • Choi, Jong-Kyu;Kim, Yang-Soo;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.337-344
    • /
    • 2012
  • Today, the number of super tall buildings are under construction or being planed in Middle East and Asian Countries. For example the burj Khalifa, the tallest building in the world, is completed in 2008 and the height of that is about 800m. Also, Lotte World Tower is under construction in Korea. External environmental conditions such as wind speed, air temperature, humidity and solar radiation around the super tall building differs according to the building height due to the vertical micro climate change. However, the meteorological information used for AC design of building is obtained typically from standard surface meterological station data(~2m above the ground). In this paper the effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height was analyzed with simulation method. As results of this research, the guideline to select the building envelop alternatives for super tall building will be suggested in this paper.

  • PDF

The Change of Heating and Cooling Load according to the Thermal Insulation Performance of Window for an Apartment House (창호의 단열성능에 따른 공동주택 냉난방 부하량 변화)

  • Song, Su-Bin;Kim, Young-Tag;Yoon, Seong-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.853-856
    • /
    • 2008
  • Windows have an great effect on annual building load because windows are the weakest parts of building envelope thermally. To reduce the consumption of building energy, the thermal performance of window has to be improved in first place. Therefore this research aims to make a quantitative analysis of the heating and cooling load according to the window thermal performance using the heat load simulation program. As a result of the simulation, annual heat load is down 38% according to the decrease of U-value of window, 1.00 W/$m^2K$. and annual heat load is up 10% according to the decrease of shading coefficient, 0.20. The annual load of the window with Low-E glass is 15% lower than the window with pair glass.

  • PDF

Development of Weather Forecast Models for a Short-term Building Load Prediction (건물의 단기부하 예측을 위한 기상예측 모델 개발)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

The study of the calculation of energy consumption load for heating and cooling in building using the Laplace Transform solution

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.292-300
    • /
    • 2014
  • The Laplace Transform solution is used as a mathematical model to analyse the thermal performance of the building constructed using different wall materials. The solution obtained from Laplace Transform is an analytical solution of an one dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures. The main purpose of the study is showing the detail of obtaining solution process of the Laplace Transform. This study is conducted using weather data from two different locations in Korea: Seoul, Busan for both winter and summer conditions. A comparison is made for the cases of an on-off controller and a proportional controller. The weather data are processed to yield hourly average monthly values. Energy consumption load is well calculated from the solution. The result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions such as Busan. Building using proportional control experience a higher comfort level in a comparison of building using on-off control.

Energy Performance and Improvement in University Library - Concentrated on 'K'University Library located in Seojong City -

  • Roh, Ji Woong
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.47-52
    • /
    • 2014
  • The problem of energy consumption is more serious in university buildings than primary, middle and high school buildings. Because university buildings have generally heating and cooling systems, and various incidental facilities. In university, the library is one of the building that many people use and the most energy is spent. So, investigation on energy saving is very important and urgent. This study aims finally to present the guideline for low-energy design of University library by aiding a designer to select best solution in the side of energy-saving. In this paper, composition of space, utilization schedule and performance of construction materials are grasped, some primary factors that effect to energy saving are analyzed by energy simulation. The result of this study is as follows; First, the subject library has more cooling load than heating load because of cooling load generated during middle season. Second, green roofs is the most effective to heating load saving, but not to cooling energy. Third, outdoor air cooling is the most effective to cooling energy saving among the investigated strategies included in this study.

Comparison of Environmental Load per Constructional Methods (Focus on Reinforced Concrete Structures and Steel-Frame Structures) (구조공법별 환경부하 산출·비교분석에 관한 연구 (철근콘크리트구조와 철골구조를 중심으로))

  • Moon, Joon-Ho;Lee, Hyun-Joo;Jung, Young-Chul;Kim, Tae-Hee;Kim, Kwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.193-195
    • /
    • 2011
  • Nowadays, climatic environment change has become a major issue in the world. This causes major emissions of carbon dioxide industries steel industry, thermal power industry, cement industry is essential in the reduction of carbon dioxide, which is based on total carbon dioxide emissions account for most of the construction industry in an effort to minimize the environmental load is needed. accordingly, through case studies, It can be induce the selection to minimize environmental load by comparing the output of quantitative energy consumption and carbon dioxide emissions per constructional methods. As a result of this study, RC Structure was less environmental load than SC structure.

  • PDF

A Study on Energy Reduction of Passive Factor Apply for the Improvement of Energy Performance in Public Building (공공기관 건물의 에너지 성능개선을 위한 패시브 요소 적용의 에너지 절감율 분석 연구)

  • Son, Ji-Hoon;Kim, Sam-Uel
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.196-201
    • /
    • 2011
  • The energy used in Korea is strongly dependent on that produced by foreign countries. Accordingly, saving energy is more important than ever, because of the rise of international oil prices and depletion of oil resources. The development of energy efficient buildings is required especially for public buildings in Korea. In this study, the energy use of public buildings is identify. Then, the analysis of energy usage through regional offices in Busan City offers energy performance for public buildings.

  • PDF

Survey Study of Optimal Cooling Equipment Capacity of the Large Hospitals in Busan City (부산지역 대형병원 냉방장비의 용량설정 실태조사)

  • Lee, Ji-Weon;Chin, Kyung-Il;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.105-110
    • /
    • 2014
  • The basic factors determining the amount of energy used in hospital buildings are weather conditions and building factors. But the real energy consumer is central plant equipment such as boilers and chillers that produce thermal energy for heating and cooling. Inaccurate decision of the primary equipment's size can cause a high initial-cost, an excessive equipment space, a wasted energy by low operation-efficiency and shortening of the machine's life. In this reason, the decision of optimal size for central plant equipment is very important. There are several factors for the decision such as an operation factor, a factor (equipment factor), piping losses and a simultaneous usage factor applied in the sizing process except a basic cooling load. But there is no standard method for applying those factors. Usually, factors are applied individually by an experience or custom of each engineer. In this study, the authors emphasize the meaning and the problem of those factors, examine them by analyzing factors which were applied to actual practices, and propose the recommendation value of safety, load, operation factors and application methods.

Analysis of energy consumption of office building by thermal resistance-capacitance method (열저항-열용량법에 의한 사무실용 건물의 소비에너지 해석)

  • Lee, C.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • This paper reports the dynamic analysis of energy consumption for an office building by heat resistance-capacitance method. If a building is divided into several wall components and the wall components is replaced by one thermal capacitance and several thermal resistances, the building becomes an electric circuit. By solving the simultaneous equations of the circuit, the dynamic heat transfer characteristics and the energy consumption rate of the building were predicted. Accuracy of modified BIN method was evaluated by the present resistance-capacitance method. The result shows that modified BIN method overpredicts the heating load of the office building 15%. Annual energy consumptions of equipments(fan, boiler, chiller) for various ventilating control system(CAV, VAV, FCU+VAV, FCU+CAV) were compared. FCU+CAV shows the minimum annual energy consumption.

  • PDF