• Title/Summary/Keyword: Building Energy Efficiency

Search Result 736, Processing Time 0.028 seconds

Study on Change of Thermal Conductivity According to Environmental Conditions (환경 조건에 따른 열전도율 변화에 관한 연구)

  • Seo, Eun-Seok;Kim, Bong-Joo;You, Nam-Gyu;Hong, Sang-Hun;Kim, Han-Nah;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.66-67
    • /
    • 2019
  • Insulated buildings are exposed to the external environment due to aging and construction problems, resulting in a decrease in building energy efficiency. Therefore, the purpose of this paper is to provide a material for the change in thermal conductivity of the insulation when it is exposed to various external environments. In the experiment, five types of heat insulating materials were selected, stored under different environmental conditions, and the thermal conductivity was measured periodically to confirm the change in thermal conductivity. As a result, the thermal conductivity of all the insulating materials except the PF board increased with the passage of time. This is because thermal insulation absorbs atmospheric moisture under all environmental conditions and the thermal conductivity increases, and in the case of thermal insulation stored indoors in environmental conditions, the temperature differs from the thermal insulation stored outside. It is considered that there is little evaporation of moisture absorbed constantly, and the change in thermal conductivity is large.

  • PDF

Prediction and control of buildings with sensor actuators of fuzzy EB algorithm

  • Chen, Tim;Bird, Alex;Muhammad, John Mazhar;Cao, S. Bhaskara;Melvilled, Charles;Cheng, C.Y.J.
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.307-315
    • /
    • 2019
  • Building prediction and control theory have been drawing the attention of many scientists over the past few years because design and control efficiency consumes the most financial and energy. In the literature, many methods have been proposed to achieve this goal by trying different control theorems, but all of these methods face some problems in correctly solving the problem. The Evolutionary Bat (EB) Algorithm is one of the recently introduced optimization methods and providing researchers to solve different types of optimization problems. This paper applies EB to the optimization of building control design. The optimized parameter is the input to the fuzzy controller, which gives the status response as an output, which in turn changes the state of the associated actuator. The novel control criterion for guarantee of the stability of the system is also derived for the demonstration in the analysis. This systematic and simplified controller design approach is the contribution for solving complex dynamic engineering system subjected to external disturbances. The experimental results show that the method achieves effective results in the design of closed-loop system. Therefore, by establishing the stability of the closed-loop system, the behavior of the closed-loop building system can be precisely predicted and stabilized.

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

A Study on the Daylighting Transmittance Efficacies of Skylights by Calculating the Effective Transmittance of Light Well (광정의 유효투과율에 의한 천창 형태별 주광의 투과효율 평가)

  • Kim, Chang-Sung
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.53-58
    • /
    • 2012
  • Daylight is one of the most critical factors that can be utilized for architectural spaces; compared to artificial light, it is a sustainable energy source without the cost of electric energy and offers a more natural feeling to the visitors in the building. To make the space quality better, many architects have tried to predict daylight performance during the design process. The aim of this study is to evaluate the daylight transmittance efficacies of the five shapes - Flat, Pyramid, Dome, Barrel Vault. Ridge - of skylights. The results of this study indicated that the differences of transmittance efficiency among various skylights were less than 4.6% except the flat shaped skylight. Therefore, this study shows that there were no big differences of the daylight transmittance efficacies among the shapes of skylights.

A study on the Improvement of Ventilation Performance in Apartment House According to the Location of Exterior Air-Vents (공동주택에서의 실외 급.배기구 위치에 따른 환기효율 향상 연구)

  • Park, Jin-Chul;Yu, Hyung-Kyu;Cha, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.71-79
    • /
    • 2005
  • In this study, the ventilation performance of mechanical ventilation system in apartment House was analyzed through model test according to characteristics of air-vent. Then adequate interval of air-vent was suggested using computer simulation which will create comfort environment through improvement of ventilation performance in apartment house. The result of experiment with separation plate to prevent mixture of contaminated exhaust air with fresh supply air, the ventilation efficiency improved about 10%. The result of simulation with horizontal location of exterior air-vent, contaminated exhaust air is mixed regardless of interval variation. Consequently, mixture of the exhaust air can be prevented through locating the supply air vent on the top side and exhaust air vent on the lower side.

A Study on Grouped Management System of Post Office Buildings (우정건축물의 효율적인 관리시스템 구축 방안)

  • Gang, Oh-Sik;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.103-107
    • /
    • 2008
  • There are about 160 post office buildings of medium and/or large scale in Korea Energy saving and efficient manpower management for the buildings are important. In this paper, patterns of the operation and energy consumption of the post office buildings are analyzed. The authors suggest an integrated and grouped management of the dispersed post office buildings using internet, through which more improved efficiency can be expected.

Recent Advances in Passive Radiative Cooling: Material Design Approaches

  • Heegyeom Jeon;Youngjae Yoo
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.22-33
    • /
    • 2024
  • Passive radiative cooling is a promising technology for cooling objects without energy input. Passive radiative cooling works by radiating heat from the surface, which then passes through the atmosphere and into space. Achieving efficient passive radiative cooling is mainly accomplished by using materials with high emissivity in the atmospheric window (8-13 ㎛). Research has shown that polymers tend to exhibit high emissivity in this spectral range. In addition to elastomers, other materials with potential for passive radiative cooling include metal oxides, carbon-based materials, and polymers. The structure of a passive radiative cooling device can affect its cooling performance. For example, a device with a large surface area will have a greater amount of surface area exposed to the sky, which increases the amount of thermal radiation emitted. Passive radiative cooling has a wide range of potential applications, including building cooling, electronics cooling, healthcare, and transportation. Current research has focused on improving the efficiency of passive radiative cooling materials and devices. With further development, passive radiative cooling can significantly affect a wide range of sectors.

Development of an Infiltration and Ventilation Model for Predicting Airflow Rates within Buildings (빌딩 내의 공기유동량 예측을 위한 누입 및 환기모델의 개발)

  • Cho, Seok-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.207-218
    • /
    • 2014
  • A ventilation model was developed for predicting the air change per hour(ACH) in buildings and the airflow rates between zones of a multi-room building. In this model, the important parameters used in the calculation of airflow are wind velocity, wind direction, terrain effect, shielding effect by surrounding buildings, the effect of the window type and insect screening, etc. Also, the resulting set of mass balance equations required for the process of calculation of airflow rates are solved using a Conte-De Boor method. When this model was applied to the building which had been tested by Chandra et al.(1983), the comparison of predicted results by this study with measured results by Chandra et al. indicated that their variations were within -10%~+12%. Also, this model was applied to a building with five zones. As a result, when the wind velocity and direction did not change, terrain characteristics influenced the largest and window types influenced the least on building ventilation among terrain characteristics, local shieldings, and window types. Except for easterly and westerly winds, the ACH increased depending on wind velocity. The wind direction had influence on the airflow rates and directions through openings in building. Thus, this model can be available for predicting the airflow rates within buildings, and the results of this study can be useful for the quantification of airflow that is essential to the research of indoor air quality(temperature, humidity, or contaminant concentration) as well as to the design of building with high energy efficiency.

Improvement of Open BIM-based Building Permission Process Using EPI(Energy Performance Index) (에너지성능지표(EPI)를 대상으로 한 개방형BIM기반 건축인허가 개선방향 제시)

  • Kim, Inhan;Kim, Minchan;Choi, Jungsik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.124-135
    • /
    • 2015
  • As many countries have been raising awareness of environmental issues, greater efforts for eco-friendly construction have been made in both governmental and private sectors. However, assessment circumstances for building energy performance and green building standard of legislation are still based on two dimension and handwork. This takes time, cost and labor, and makes assessment inaccurate and inefficient. Therefore, this study suggests methods to improve eco-friendly construction permission process and to automatize open BIM-based assessment of Energy Performance Index (EPI) among several eco-friendly construction certification standards. First, it analyzes the relations between assessment criteria and IFC data, and provides solutions to problems and limitations. Second, it applies the solutions to assessment program in order to automatize open BIM-based assessment for EPI. The eco-friendly construction permission process with these solutions applied will reduce time, cost, and labor by simplifying and automatizing the tasks. Also, the simplified process of design revision will improve not only productivity and efficiency but also accuracy and reliability.

Analysis of Heat Transfer Characteristics by Materials in Closed Conditions Using Acrylic Hemisphere (I): Comparison of Interior Finishing Materials (아크릴 반구를 이용한 밀폐 조건에 따른 재료별 열 이동 특성 분석(I): 실내마감재 종류에 따른 비교)

  • YANG, Seung Min;LEE, Hyun Jae;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.217-230
    • /
    • 2020
  • Global warming has increased interest in reducing greenhouse gas emissions. And a policy has effort to reduce energy consumption as a greenhouse gas reduction plan. In Korea, 25% of total energy is consumed in the building sector. In order to reduce energy consumption of buildings, it is possible to expand the utilization of wood as a structural material or thermal insulation materials with low thermal conductivity. It is also reported that when used as an interior finishing material, the energy consumption of the building is reduced by up to 7% by insulation performance. In this study, the heat transfer characteristics and the heat capacity were compared according to the three type of finishing materials(cement, paulownia coreana, medium density fiberboard) normally used as indoor finish materials. Through this study, most of the heat transfer volumes are transferred in the form of radiant heat, and the result was derived from the highest amount of energy and heat transfer in the use of paulownia coreana. When indoor finishing materials are used as wood, it is deemed that energy efficiency inside the building will be improved.