• Title/Summary/Keyword: Building Energy Efficiency

Search Result 736, Processing Time 0.025 seconds

Development of Impact Table and optimum combination dedication module for green-remodeling advance business value assessment

  • Choi, Jun-Woo;Kim, Gyoung-Rok;Ko, Jung-Lim;Shin, Jee-Woong;Lee, Keon-Ho
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: In case of existing building, A lot of attempts are being made like changing thermal system or using high efficiency products to decrease energy load and increase energy efficiency. However, (1) Absence of systemed database of green-remodeling technology and products. (2) Absence of comparative analysis system and qualitative/quantitative evaluation method of energy performance and energy reduction cost. (3) Existing remodeling was very hard to access for non-experts. So, in this paper, the authors developed data base for green-remodeling(Impact Table A, Impact Table B) and optimum combination dedication tool for user convenience. Accordingly, purpose of this paper validate usefulness of Impact Table and optimum alternative dedication tool. Method: For validate the usefulness of Impact Table and optimum combination dedication tool, the authors selected five test model office buildings. Next, through research investigation, the authors diagnosed the present state of buildings. In base of diagnosis results, select technologies for remodeling by qualitative comparison (Impact Table A). Next, evaluate quantitative price and performance technologies that selected in Impact Table A (Impact Table B). Lastly, through final evaluation of Impact Taba A and Impact Table B, determine the direction of the green-remodeling. Result: Impact Table and optimum combination dedication tool can use relative indicator for green-remodeling, especially through ROI by detail field.

A Study on the domestic power plant roof waterproofing system & insulation efficiency (국내 발전소 지붕방수설계 시스템 및 단열 성능에 관한 연구)

  • Chung, Kwang-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • As the development of construction technology and new materials, building requirements has been varied gadually. Comfortable environment and serviceability of production activity and energy conservation are being dealt with very seriously. Recently localization of engineering technology of Power Plant, however, construction materials and domestic technology are being developed forcingly. According to above topics this thes is going to study roof waterproofing, thermal insulation and evaluate adiabatic performance and evaluation of properties of waterproofing materials and energy conservation. The results of studying and evaluating of roof waterproofing, thermal insulation and adiabatic performance of Power Plant are as follows. 1. Sheet waterproofing method is better than that of asphalt waterproofing method in that adaptability of wearhertight, thermal resistant, contraction and expansion. 2. It is required to replace polyurethane or ethylene used as thermal insulation with rock wool which is noncombustible materials. 3. It is recommended to usd outer insulation method than inner insulation method due to superioty of outer insulation method. Efficiency of insulation materials used in power plant is generally good except perlite mortar used in the power plant(YGN 1-2, GRI 1-2).

A Study on Ecological Characteristics of Interior Design for Apartment Building - A Case Analysis of Model Houses for Medium- and large-sized Pyeong Apartments in Busan Area - (아파트 실내디자인의 생태적 특성에 관한 연구 - 부산지역 중.대형 평수 아파트 모델하우스 사례분석 -)

  • Shin, Jae-Moon;Youn, Ji-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.181-191
    • /
    • 2007
  • This study attempted to analyze the characteristics of interior design of the apartment units of Model-houses in terms of ecological aspects. 9 companies that possessed their model houses among the construction companies in Busan area as of August 2006 were selected. 20 units in the model houses of these companies were visited and analyzed. Through literature review, the guideline for the environmentally-friendly residential design was designed and developed to the checklists. The data collected were analyzed to find out the ecological characteristics of the interior space of apartment units. The findings are the followings. First, energy efficiency was properly considered in terms of natural lighting and natural ventilation. Second, in sustainability, the materials for floors and walls could not be reused even though they were environmentally-friendly. Water system needs more improvement for sustainable development including grey-water and rain recycling system. Third, interior greening should be applied more for better environment both physically and emotionally. It is expected that future housing will be more high-risen and densely-populated apartment spaces. Therefore, an approach to new ecological aspects including an emphasis on interior greening, use of eco-materials and adhesives, water recycling and flexibility of the spatial configuration should be made for the next generation.

Study on TES system application for industrial production facility (축냉시스템의 산업용 생산설비 적용에 대한 고찰)

  • Park, C.H.;Hong, S.S.;Kim, J.R.;Park, S.S.;Hwang, H.S.
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1288-1293
    • /
    • 2009
  • The TES (Thermal Energy Storage) cooling system utilizing cheaper off-peak electricity has been applied just for building air-conditioning currently and causes limitation of usage rate and inefficiency of national resources utilization. In this regard, more says the necessity to apply TES system in industrial cooling system which is longer using period and wider usage. In this study, we will approve the technical and economical improvement in efficiency of industrial cooling system applied TES system by utilizing cheaper off-peak electricity and it will attribute the promotion of TES system and stabilization of supply and demand of electric power by proving the necessity to develop more efficient industrial cooling system by combining TES system.

  • PDF

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

Numerical Simulations of Added Resistance and Motions of KCS in Regular Head Waves (선수 규칙파 중 KCS의 부가저항 및 운동성능 수치해석)

  • Seo, Seonguk;Park, Sunho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.132-142
    • /
    • 2017
  • As the International Maritime Organization (IMO) recently introduced the Energy Efficiency Design Index (EEDI) for new ships building and the Energy Efficiency Operational Indicator (EEOI) for ship operation, thus an accurate estimation of added resistance of ships advancing in waves has become necessary. In the present study, OpenFOAM, computational fluid dynamics libraries of which source codes are opened to the public, was used to calculate the added resistance and motions of the KCS. Unstructured grid using a hanging-node and cut-cell method was used to generate dense grid around a wave and KCS. A dynamic deformation mesh method was used to consider the motions of the KCS. Five wavelengths from a short wavelength (${\lambda}/LPP=0.65$) to a long wavelength (${\lambda}/LPP=1.95$) were considered. The added resistance and the heave & pitch motions calculated for various waves were compared with the results of model experiments.

Temperature Control for PV Panel Absorbing Heat by Phase Change Material and its Estimation (상변환물질을 활용한 태양광 패널 표면온도 제어효과 및 최적화 시스템)

  • Lee, Hyo-Jin;Chun, Jong-Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.10-15
    • /
    • 2010
  • The experimental study was conducted to optimize the system dissipating properly heat from the in-situ solar panel installed on the roof. For this purpose, six 12-Watt panels, which were consisted of the different design conditions such as containing phase change material(PCM), changing the array of the aluminum fin and honeycomb at the back of the panel, were tested. PCM, which had $44^{\circ}C$ melting point, was chosen in this study. In order to enhance absorbing and expelling heatin PCM, profiled aluminum fin was placed either inward oroutward from the panel. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. During the experiment, there were ranged to $26^{\circ}C\sim32^{\circ}C$ for outdoor temperature and $700W/m^2\sim1000W/m^2$ for irradiance. As a result, the solar panel, combined with honeycomb and outward fins with PCM instead of placing the fins inward, is showing the best performance in terms of controling panel temperature and its efficiency.

Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat (저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

IEA ECBCS Annex 54 Economic Assessment Study of a Fuel Cell Integrated Ground Source Heat Pump Microgeneration System (연료전지 지열히트펌프 마이크로제너레이션 IEA ECBCS Annex 54 경제성 평가 연구)

  • Na, Sun-Ik;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.199-205
    • /
    • 2014
  • The integration of FC (Fuel Cell) and GSHP (Ground Source Heat Pump) hybrid system could produce a synergistic advantage in thermal and electric way. This study intends to analyse the economical aspect of a FC integrated GSHP hybrid system compared to the conventional system which is consisted with a boiler and a chiller. Based on the hourly simulation, the study indicated that GSHP system and FC+GSHP hybrid system could reduce the energy consumption on a building. The method of the economic assessment has been based on IEA ECBCS Annex 54 Subtask C SPB(Simple Payback) method. The SPB was calculated using the economic balanced year of the alternative system over the conventional (reference) system. The SPB of the alternative systems (GSHP and FC+GSHP) with 50% initial incentive was 4.06 and 26.73 year respectively while the SPB without initial incentive of systems was 10.71 and 57.76 year.

A Study on the Thermal Insulation Performance of Vacuum Insulation Panel Using Dry Processing Glass Fiber Core (건식 유리섬유 심재를 사용한 진공단열재의 단열특성에 관한 연구)

  • Yoo, Chae-Jung;Kim, Min-Cheol;Go, Seong-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.121-128
    • /
    • 2019
  • There is a big move to build zero-energy buildings in the form of passive houses that reduce energy waste worldwide. Korea has set a goal of reducing its greenhouse gas emissions by 37% by 2030 through the activation of green buildings, such as strengthening the energy levels of new buildings and improving the energy efficiency of existing buildings. The use of insulation with high insulation performance is one of the key technologies to realize this, and vacuum insulation is the next generation insulation that blocks the energy flow of the building. In this study, we measured the bonding structure of dry and wet processing glass fiber core materials and compared the insulation performance of vacuum insulation panel. In addition, the insulation performance of vacuum insulation panel was measured according to the thickness of the laminated core. It can be confirmed that the lamination structure of the core and the lamination thickness are important factors for the heat insulating performance of the vacuum insulating panel.