• Title/Summary/Keyword: Build Size

Search Result 453, Processing Time 0.027 seconds

Analysis of the operation status and opinion on the improvement of fishing vessel structure in coastal improved stow net fishery by the questionnaire survey (설문조사를 통한 연안개량안강망어업의 조업 실태 및 어선 구조 개선에 관한 의견 분석)

  • CHANG, Ho-Young;KIM, Min-Son;HWANG, Bo-Kyu;OH, Jong Chul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.316-333
    • /
    • 2021
  • In order to understand basic data for improving the fishing system and fishing vessel structure in coastal improved stow net fishery, a questionnaire survey and on-site hearing were conducted from May 10 to June 11, 2019 to analyze opinions on the improvement of operation status and fishing vessel structure. The questionnaire survey consisted of ten questions on the operation status of coastal improved stow net fishery and six questions on the improvement of fishing vessel structure, and the results of each question were analyzed by the region, the captain's age, the captain's career and the age of fishing vessel. As a result of analyzing opinions on the operation status of the coastal improved stow net fishery, it was found that the average time required for casting net was 32.8 to 33.0 minutes and that the average time required for hauling net was 41.0 to 42.2 minutes which took 10 to 12 minutes more than for casting net. The most important work requiring improvement during fishing operation (the first priority) were 'hauling net operation,' 'readjustment and storage of fishing gear,' and 'fish handling' and the hardest factor in fishing management were in the order of 'reduction of catch,' 'labor shortage' and 'rising labor costs.' The most institutional improvement that is most needed in coastal improved stow net fishery was an 'using fine mesh nets.' Most of the respondent to the questions on the experience in hiring foreign crews was 'either hiring or willing to hire foreign crews,' and the average number of foreign crews employed was found to be 2.3 to 2.4 persons. The most important reason for hiring (or considering employment) foreign crews was 'high labor costs.' The degree of communication with foreign crews during fishing operation were 'moderate' or 'difficult to direct work.' The most important problem in hiring foreign crews (the first priority) was an 'illegal departure.' As the survey results on the opinion of structural improvement of coastal improved stow net fishing vessel, the degree of satisfaction with fishing vessel structure related to fishing operation was found to be somewhat unsatisfactory, with an average of 3.3 points on a five-point scale. The inconvenient structure of fishing vessel in possession (the first priority), the space needed most for the construction of new fishing vessel (the first priority) and the space considered important for the construction of new fishing vessel (the first prioprity) was a 'fish warehouse.' The most preferred equipment for the construction of new fishing vessel were 'engine operation monitoring' and 'navigation safety devices.' The average size (tonnage class), the average horse power and the average total length of fishing vessel for proper profit and safety fishing operation was between 13.8 and 14.0 tonnes, 808.3 to 819.5 H.P. and 23.4 to 23.5 meters, respectively. The results of the operation status of coastal improved stow net fishery and the requirement for improving the fishing vessel structure are expected to be provided as basic data for reference when we build or improve the fishing vessel.

Analysis of Plants Social Network for Vegetation Management on Taejongdae in Busan Metropolitan City (부산 태종대 식생관리를 위한 식물사회네트워크 분석)

  • Sang-Cheol Lee;Hyun-Mi Kang;Seok-Gon Park;Jae-Bong Baek;Chan-Yeol Yu;In-Chun Hwang;Song-Hyun Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.651-661
    • /
    • 2022
  • Plants social network analysis, which combines plants society and social network analyses, is a new research method for understanding plants society. This study was conducted to investigate the relationship between species, using plant social network analysis targeting Taejongdae in Busan, and build basic data for management. Taejongdae, located in the warm temperate forest in Korea, is a representative coastal forest of Busan Metropolitan City, and the Pinus thunbergii-Eurya japonicacommunity is widely distributed. This study set up 100 quadrats (size of 100m2each) in Taejongdae to investigate the species that emerged and analyzed the interspecies association focusing on major species. Based on the results, a sociogram was created using the Gephi 0.9.2, and the network centrality and structure were analyzed. The results showed that the frequency of appearance was high in the order of P. thunbergii, E. japonica, Quercus serrata, Sorbus alnifolia, Ligustrum japonicum, and Styrax japonicusand that many evergreen broad-leaved trees appeared due to the environmental characteristics of the site. The plants social network of Taejongdae was composed of a small-scale network with 50 nodes and 172 links and was divided into 4 groups through modularization. The succession sere identified through a sociogram confirmed that the group that include P. thunbergiiand E. japonicawould progress to a deciduous broadleaf community dominated by Q. serrataand Carpinus tschonoskii, using hub nodes such as Prunus serrulataf. spontaneaand Toxicodendron trichocarpum. Another succession sere was highly likely to progress to an evergreen broad-leaved community dominated by Machilus thunbergiiand Neolitsea sericea, using M. thunbergiias a medium. In some areas, a transition to a deciduous broad-leaved community dominated by Celtis sinensis, Q. variabilisand Zelkova serratausing Lindera obtusilobaand C. sinensisas hub nodes was expected.

Theoretical Study on Modeling Success Factors of Overseas Agricultural Startups (해외 농업스타트업 성공요인 모델링에 관한 이론적 고찰)

  • Jinhwan, Park;Sangsoon, Kim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.85-106
    • /
    • 2023
  • This study reviewed and derived the success factors of overseas agricultural startups and studied their integrated research model. Agricultural startups and general startups have in common that poor resources and infrastructure exist from a resource-based perspective after startup, but a differentiated approach from general startups is required due to the nature of the primary industry of agriculture. In this study, we approach the company internal factors (human resources/vision/distribution network capacity/capital capacity/cultivated crops/physical resources/farming technology, etc.) and external factors (agricultural infrastructure/laws/regulations/relationship with surrounding society, etc.) We tried to build a research model that can be integrated by focusing on various existing research models, success factors, and entrepreneurship. Through this, it is intended to present an integrated model that is practically helpful to business performance to entrepreneurs, business-related persons, and researchers who need an integrated understanding of agricultural startups at home and abroad. made for purpose In this paper, a standard model was established through three types (existing agricultural startup, small and medium-sized business startup, multinational company, and comprehensive approach) according to size and characteristics for modeling agricultural startup success factors. Through this, a total of 9 success factors (agricultural management, external environment, manager/founder characteristics, corporate identity, business management, organizational culture, infrastructure, commercialization capability, and sustainable growth) were derived. The implication of this study is that the success factors of agricultural startups were comprehensively presented based on 'entrepreneurship' for various domestic and foreign agricultural startup cases. By confirming the systematic categorization, a standard model for future agricultural startup success factors was presented, and as a result, a foundation was presented for systematic research and practical effectiveness of related research in the future.

  • PDF

Factors Affecting International Transfer Pricing of Multinational Enterprises in Korea (외국인투자기업의 국제이전가격 결정에 영향을 미치는 환경 및 기업요인)

  • Jun, Tae-Young;Byun, Yong-Hwan
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.85-102
    • /
    • 2009
  • With the continued globalization of world markets, transfer pricing has become one of the dominant sources of controversy in international taxation. Transfer pricing is the process by which a multinational corporation calculates a price for goods and services that are transferred to affiliated entities. Consider a Korean electronic enterprise that buys supplies from its own subsidiary located in China. How much the Korean parent company pays its subsidiary will determine how much profit the Chinese unit reports in local taxes. If the parent company pays above normal market prices, it may appear to have a poor profit, even if the group as a whole shows a respectable profit margin. In this way, transfer prices impact the taxable income reported in each country in which the multinational enterprise operates. It's importance lies in that around 60% of international trade involves transactions between two related parts of multinationals, according to the OECD. Multinational enterprises (hereafter MEs) exert much effort into utilizing organizational advantages to make global investments. MEs wish to minimize their tax burden. So MEs spend a fortune on economists and accountants to justify transfer prices that suit their tax needs. On the contrary, local governments are not prepared to cope with MEs' powerful financial instruments. Tax authorities in each country wish to ensure that the tax base of any ME is divided fairly. Thus, both tax authorities and MEs have a vested interest in the way in which a transfer price is determined, and this is why MEs' international transfer prices are at the center of disputes concerned with taxation. Transfer pricing issues and practices are sometimes difficult to control for regulators because the tax administration does not have enough staffs with the knowledge and resources necessary to understand them. The authors examine transfer pricing practices to provide relevant resources useful in designing tax incentives and regulation schemes for policy makers. This study focuses on identifying the relevant business and environmental factors that could influence the international transfer pricing of MEs. In this perspective, we empirically investigate how the management perception of related variables influences their choice of international transfer pricing methods. We believe that this research is particularly useful in the design of tax policy. Because it can concentrate on a few selected factors in consideration of the limited budget of the tax administration with assistance of this research. Data is composed of questionnaire responses from foreign firms in Korea with investment balances exceeding one million dollars in the end of 2004. We mailed questionnaires to 861 managers in charge of the accounting departments of each company, resulting in 121 valid responses. Seventy six percent of the sample firms are classified as small and medium sized enterprises with assets below 100 billion Korean won. Reviewing transfer pricing methods, cost-based transfer pricing is most popular showing that 60 firms have adopted it. The market-based method is used by 31 firms, and 13 firms have reported the resale-pricing method. Regarding the nationalities of foreign investors, the Japanese and the Americans constitute most of the sample. Logistic regressions have been performed for statistical analysis. The dependent variable is binary in that whether the method of international transfer pricing is a market-based method or a cost-based method. This type of binary classification is founded on the belief that the market-based method is evaluated as the relatively objective way of pricing compared with the cost-based methods. Cost-based pricing is assumed to give mangers flexibility in transfer pricing decisions. Therefore, local regulatory agencies are thought to prefer market-based pricing over cost-based pricing. Independent variables are composed of eight factors such as corporate tax rate, tariffs, relations with local tax authorities, tax audit, equity ratios of local investors, volume of internal trade, sales volume, and product life cycle. The first four variables are included in the model because taxation lies in the center of transfer pricing disputes. So identifying the impact of these variables in Korean business environments is much needed. Equity ratio is included to represent the interest of local partners. Volume of internal trade was sometimes employed in previous research to check the pricing behavior of managers, so we have followed these footsteps in this paper. Product life cycle is used as a surrogate of competition in local markets. Control variables are firm size and nationality of foreign investors. Firm size is controlled using dummy variables in that whether or not the specific firm is small and medium sized. This is because some researchers report that big firms show different behaviors compared with small and medium sized firms in transfer pricing. The other control variable is also expressed in dummy variable showing if the entrepreneur is the American or not. That's because some prior studies conclude that the American management style is different in that they limit branch manger's freedom of decision. Reviewing the statistical results, we have found that managers prefer the cost-based method over the market-based method as the importance of corporate taxes and tariffs increase. This result means that managers need flexibility to lessen the tax burden when they feel taxes are important. They also prefer the cost-based method as the product life cycle matures, which means that they support subsidiaries in local market competition using cost-based transfer pricing. On the contrary, as the relationship with local tax authorities becomes more important, managers prefer the market-based method. That is because market-based pricing is a better way to maintain good relations with the tax officials. Other variables like tax audit, volume of internal transactions, sales volume, and local equity ratio have shown only insignificant influence. Additionally, we have replaced two tax variables(corporate taxes and tariffs) with the data showing top marginal tax rate and mean tariff rates of each country, and have performed another regression to find if we could get different results compared with the former one. As a consequence, we have found something different on the part of mean tariffs, that shows only an insignificant influence on the dependent variable. We guess that each company in the sample pays tariffs with a specific rate applied only for one's own company, which could be located far from mean tariff rates. Therefore we have concluded we need a more detailed data that shows the tariffs of each company if we want to check the role of this variable. Considering that the present paper has heavily relied on questionnaires, an effort to build a reliable data base is needed for enhancing the research reliability.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

The Structural Relationships between Control Types over Salespeople, Their Responses, and Job Satisfaction - Mediating Roles of Role Clarity and Self-Efficacy - (영업사원에 대한 통제유형, 반응, 그리고 직무만족 간의 구조적 관계 - 역할명확성과 자기효능감의 매개효과 -)

  • Yoo, Dong-Keun;Lim, Jong-Koo;Lim, Ji-Hoon
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.23-49
    • /
    • 2007
  • Salespeople act at the point of MOT with customers and deliver the enterprise's message to the customers. They build up relationships with customers as well as deliver the customer's message to the enterprise. The salespeople's activity at the point of MOT with the customers and the degree of satisfaction of the customers' needs will affect the customers' attitude toward the enterprise, brand loyalty, and retention intention. Ultimately, it will influence the enterprise's financial performance. The control of salespe1ople is one of the most interesting topics of marketing. This research investigates the relationships of the control types over salespeople(positive/negative outcome control, positive/negative behavior control) and job satisfaction and their mediating variables. The mediating variables in the relationships have been identified as outcome/behavior-related role clarity and self-efficacy. The purpose of this study is more specifically as follows: First, it investigate how the perception of salespeople control types affect role-clarity. Second, it examines how the perception of salespeople control types influence self-efficacy. Third, it investigate the mediating role of role-clarity between the perception of salespeople control types and self-efficacy. Fourth, it investigates how role-clarity affect self-efficacy and job satisfaction. Finally, it will investigates how self-efficacy influences job satisfaction. Data were collected from the pharmaceutical industry salespeople and analyzed by SPSS 12.0 and AMOS 6.0. The data were collected by 400 respondents and 377 valid questionnaires were analyzed. The results are summarized as follows: First, positive/negative outcome controls had a positive relationship with outcome-related role clarity. Also positive behavior control had a positive effect on behavior-related role clarity, but negative behavior control didn't influence behavior-related role clarity. Second, positive outcome control influenced self-efficacy positively, but positive behavior control didn't have a positive effect on self-efficacy. In addition negative outcome control and negative behavior control had a positive effect on self-efficacy due to the mediating role of outcome-related and behavior-related role clarity. Third, outcome-related role clarity and behavior-related role clarity influenced self-efficacy positively. Behavior-related role clarity had a positive effect on job satisfaction, but outcome-related role clarity didn't influence job satisfaction. Finally, self-efficacy didn't have any effect on job satisfaction. The contributions of this study are as follows: First, existing studies have investigated the direct causal relationship between salespeoples' control type and performance, but this study investigates the structural causality between salespeoples' control types, responses, and performances. Second, this study found the mediating role of outcome-related/behavior-related role-clarity between outcome/behavior control and self-efficacy. Finally, the findings of this study further insight to existing studies on the relationship between job satisfaction and self-efficacy. The confidence of salespeoples' task influenced job satisfaction positively in existing articles,field studies, but the relationship between these two variables was not significant in this study. This means that there can be a different relationship between confidence and job satisfaction according to salespeoples' business. That is, the business environment may not be satisfying, even if the salespeople say that they have ability and confidence about their business. This means that able salespeople who have ability and confidence about their business are not satisfied with their job advancement in the company. Therefore, enterprise need to provide training that can establish a business environment that can satisfy the salespeole's expectation level which will secure good salespeople. This study may have limitation when applied to future studies. First,in this study as with existing studies it investigates the control level that salespeople feel is being measured. Actuality, the control level that a manager enforces and the control level that salespeople perceive when one is late can be different. There is need to measure lateness from both the perspective of the manager and salespeople should be done to supplement this study in the future Second, this study used variables that were connected with action result but salespeople's job satisfaction is due to the result of control. But, focusing on result of control can provide a more important financial result than sales performance. This study is also limited in that it did not consider financial result by result of control. Further studies on this will need to be done in the future. Third, this study may have a further limitation,because the investigation was restricted to pharmaceutical salespeople selling to hospitals. It is necessary to execute investigations in various industries to increase the generalization of the study findings Fourth, in this study, role clarity and self-efficacy by response variable for control and considered job satisfaction by outcome variable of control was considered. But, can other variables be considered beside response variable and result variable for control? For example, can financial affairs and change of post by outcome variable along with business stress by response variable for control be considered? Therefore, future studies need to consider various control variables. Finally, there is limited supporting research in the field of marketing which restricts the generalization of the study finding along with collecting material through random sampling of a limited size. This research summarizes the research in this area, the difference from the previous research, and provides a discussion of its limitations and the need and direction for further future research.

  • PDF

Case Analysis of the Promotion Methodologies in the Smart Exhibition Environment (스마트 전시 환경에서 프로모션 적용 사례 및 분석)

  • Moon, Hyun Sil;Kim, Nam Hee;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.171-183
    • /
    • 2012
  • In the development of technologies, the exhibition industry has received much attention from governments and companies as an important way of marketing activities. Also, the exhibitors have considered the exhibition as new channels of marketing activities. However, the growing size of exhibitions for net square feet and the number of visitors naturally creates the competitive environment for them. Therefore, to make use of the effective marketing tools in these environments, they have planned and implemented many promotion technics. Especially, through smart environment which makes them provide real-time information for visitors, they can implement various kinds of promotion. However, promotions ignoring visitors' various needs and preferences can lose the original purposes and functions of them. That is, as indiscriminate promotions make visitors feel like spam, they can't achieve their purposes. Therefore, they need an approach using STP strategy which segments visitors through right evidences (Segmentation), selects the target visitors (Targeting), and give proper services to them (Positioning). For using STP Strategy in the smart exhibition environment, we consider these characteristics of it. First, an exhibition is defined as market events of a specific duration, which are held at intervals. According to this, exhibitors who plan some promotions should different events and promotions in each exhibition. Therefore, when they adopt traditional STP strategies, a system can provide services using insufficient information and of existing visitors, and should guarantee the performance of it. Second, to segment automatically, cluster analysis which is generally used as data mining technology can be adopted. In the smart exhibition environment, information of visitors can be acquired in real-time. At the same time, services using this information should be also provided in real-time. However, many clustering algorithms have scalability problem which they hardly work on a large database and require for domain knowledge to determine input parameters. Therefore, through selecting a suitable methodology and fitting, it should provide real-time services. Finally, it is needed to make use of data in the smart exhibition environment. As there are useful data such as booth visit records and participation records for events, the STP strategy for the smart exhibition is based on not only demographical segmentation but also behavioral segmentation. Therefore, in this study, we analyze a case of the promotion methodology which exhibitors can provide a differentiated service to segmented visitors in the smart exhibition environment. First, considering characteristics of the smart exhibition environment, we draw evidences of segmentation and fit the clustering methodology for providing real-time services. There are many studies for classify visitors, but we adopt a segmentation methodology based on visitors' behavioral traits. Through the direct observation, Veron and Levasseur classify visitors into four groups to liken visitors' traits to animals (Butterfly, fish, grasshopper, and ant). Especially, because variables of their classification like the number of visits and the average time of a visit can estimate in the smart exhibition environment, it can provide theoretical and practical background for our system. Next, we construct a pilot system which automatically selects suitable visitors along the objectives of promotions and instantly provide promotion messages to them. That is, based on the segmentation of our methodology, our system automatically selects suitable visitors along the characteristics of promotions. We adopt this system to real exhibition environment, and analyze data from results of adaptation. As a result, as we classify visitors into four types through their behavioral pattern in the exhibition, we provide some insights for researchers who build the smart exhibition environment and can gain promotion strategies fitting each cluster. First, visitors of ANT type show high response rate for promotion messages except experience promotion. So they are fascinated by actual profits in exhibition area, and dislike promotions requiring a long time. Contrastively, visitors of GRASSHOPPER type show high response rate only for experience promotion. Second, visitors of FISH type appear favors to coupon and contents promotions. That is, although they don't look in detail, they prefer to obtain further information such as brochure. Especially, exhibitors that want to give much information for limited time should give attention to visitors of this type. Consequently, these promotion strategies are expected to give exhibitors some insights when they plan and organize their activities, and grow the performance of them.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

An Exploratory Study on the Effects of Relational Benefits and Brand Identity : mediating effect of brand identity (관계혜택과 브랜드 동일시의 역할에 관한 탐색적 연구: 브랜드 동일시의 매개역할을 중심으로)

  • Bang, Jounghae;Jung, Jiyeon;Lee, Eunhyung;Kang, Hyunmo
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.155-175
    • /
    • 2010
  • Most of the service industries including finance and telecommunications have become matured and saturated. The competitions have become severe while the differences among brands become smaller. Therefore maintaining good relationships with customers has been critical for the service providers. In case of credit card and debit card, the similar patterns are shown. It is important for them to maintain good relationships with customers, and therefore, they have used marketing program which provides customized services to customers and utilizes the membership programs. Not only do they build and maintain good relationships, but also highlight their brands from the emotional aspects. For example, KB Card or Hyundai Card uses well-known designers' works for their credit card design. As well, they differentiate the designs of credit cards to stress on their brand personalities. BC Card introduced the credit card with perfume that a customer would like. Even though the credit card is small and not shown to public easily, it becomes more important for those companies to touch the customers' feelings with the brand personalities and their images. This is partly because of changes in consumers' lifestyles. Y-generations becomes highly likely to express themselves in many different ways and more emotional than X-generations. For the Y-generations, therefore, even credit cards in the wallet should be personalized and well-designed. In line with it, credit cards with good design can be seen as an example of brand identity, where different design for each customer can be used to recognize the membership groups that customers want to belong. On the other hand, these credit card companies offer the special treatment benefits for those customers who are heavy users for the cards. For example, those customers who love sports will receive some special discounts when they use their credit cards for sports related products. Therefore this study attempted to explore the relationships between relational benefits, brand identification and loyalty. It has been well known that relational benefits and brand identification lead to loyalty independently from many other studies, but there has been few study to review all the three variables all together in a research model. Furthermore, as reviewed above, in the card industry, many companies attempt to associate the brand image with their products to fit their customers' lifestyles while relational benefits are still playing an important role for their business. Therefore in our research model, relational benefits, brand identification, and loyalty are all included. We focus on the mediating effect of brand identification. From the relational benefits perspective, only special treatment benefit and confidence benefit are included. Social benefit is not applicable for this credit card industry because not many cases of face-to-face interaction can be found. From the brand identification perspective, personal brand identity and social brand identity are reviewed and included in the model. Overall, the research model emphasizes that the relationships between relational benefits and loyalty will be mediated by the effect of brand identification. The effects of relational benefits which are confidence benefit and special treatment benefits on loyalty will be realized when they fit to the personal brand identity and social brand identity. In the research model, therefore, the relationships between confidence benefit and social brand identity, and between confidence benefit and personal identity are hypothesized while the effects of special treatment benefit on social brand identity and personal brand identity are hypothesized. Loyalty, then, is hypothesized to have positive relationships with personal brand identity and social brand identity. In addition, confidence benefit among the relational benefits is expected to have a direct, positive relationship with loyalty because confidence benefit has been recognized as a critical factor for good relationships and satisfaction. Data were collected from college students who have been using either credit cards or debit cards. College students were regarded good subjects because they are in Y-generation cohorts and have tendency to express themselves more. Total sample size was two hundred three at the beginning, but after deleting those data with many missing values, one hundred ninety-seven data points were remained and used for the model testing. Measurement items were brought from the previous literatures and modified for this research. To test the reliability, using SPSS 14, chronbach's α was examined and all the values were from .874 to .928 exceeding over .7. Using AMOS 7.0, confirmatory factor analysis was conducted to investigate the measurement model. The measurement model was found good fit with χ2(67)=188.388 (p= .000), GFI=.886, AGFI=.821, CFI=.941, RMSEA=.096. Using AMOS 7.0, structural equation modeling has been used to analyze the research model. Overall, the research model fit were χ2(68)=188.670 (p= .000), GFI=.886, AGFI=,824 CFI=.942, RMSEA=.095 indicating good fit. In details, all the paths hypothesized in the research model were found significant except for the path from social brand identity to loyalty. Personal brand identity leads to loyalty while both confidence benefit and special treatment benefit have a positive relationships with personal and social identities. As well, confidence benefit has a direct positive effect on loyalty. The results indicates the followings. First, personal brand identity plays an important role for credit/debit card usage. Therefore even for the products which are not shown to public easy, design and emotional aspect can be important to fit the customers' lifestyles. Second, confidence benefit and special treatment benefit have a positive effects on personal brand identity. Therefore it will be needed for marketers to associate the special treatment and trust and confidence benefits with personal image, personality and personal identity. Third, this study found again the importance of confidence and trust. However interestingly enough, social brand identity was not found to be significantly related to loyalty. It can be explained that the main sample of this study consists of college students. Those strategies to facilitate social brand identity are focused on high social status groups while college students have not been established their status yet.

  • PDF

The Effect of Mutual Trust on Relational Performance in Supplier-Buyer Relationships for Business Services Transactions (재상업복무교역중적매매관계중상호신임대관계적효적영향(在商业服务交易中的买卖关系中相互信任对关系绩效的影响))

  • Noh, Jeon-Pyo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.32-43
    • /
    • 2009
  • Trust has been studied extensively in psychology, economics, and sociology, and its importance has been emphasized not only in marketing, but also in business disciplines in general. Unlike past relationships between suppliers and buyers, which take considerable advantage of private networks and may involve unethical business practices, partnerships between suppliers and buyers are at the core of success for industrial marketing amid intense global competition in the 21st century. A high level of mutual cooperation occurs through an exchange relationship based on trust, which brings long-term benefits, competitive enhancements, and transaction cost reductions, among other benefits, for both buyers and suppliers. In spite of the important role of trust, existing studies in buy-supply situations overlook the role of trust and do not systematically analyze the effect of trust on relational performance. Consequently, an in-depth study that determines the relation of trust to the relational performance between buyers and suppliers of business services is absolutely needed. Business services in this study, which include those supporting the manufacturing industry, are drawing attention as the economic growth engine for the next generation. The Korean government has selected business services as a strategic area for the development of manufacturing sectors. Since the demands for opening business services markets are becoming fiercer, the competitiveness of the business service industry must be promoted now more than ever. The purpose of this study is to investigate the effect of the mutual trust between buyers and suppliers on relational performance. Specifically, this study proposed a theoretical model of trust-relational performance in the transactions of business services and empirically tested the hypotheses delineated from the framework. The study suggests strategic implications based on research findings. Empirical data were collected via multiple methods, including via telephone, mail, and in-person interviews. Sample companies were knowledge-based companies supplying and purchasing business services in Korea. The present study collected data on a dyadic basis. Each pair of sample companies includes a buying company and its corresponding supplying company. Mutual trust was traced for each pair of companies. This study proposes a model of trust-relational performance of buying-supplying for business services. The model consists of trust and its antecedents and consequences. The trust of buyers is classified into trust toward the supplying company and trust toward salespersons. Viewing trust both at the individual level and the organizational level is based on the research of Doney and Cannon (1997). Normally, buyers are the subject of trust, but this study supposes that suppliers are the subjects. Hence, it uniquely focused on the bilateral perspective of perceived risk. In other words, suppliers, like buyers, are the subject of trust since transactions are normally bilateral. From this point of view, suppliers' trust in buyers is as important as buyers' trust in suppliers. The suppliers' trust is influenced by the extent to which it trusts the buying companies and the buyers. This classification of trust using an individual level and an organization level is based on the suggestion of Doney and Cannon (1997). Trust affects the process of supplier selection, which works in a bilateral manner. Suppliers are actively involved in the supplier selection process, working very closely with buyers. In addition, the process is affected by the extent to which each party trusts its partners. The selection process consists of certain steps: recognition, information search, supplier selection, and performance evaluation. As a result of the process, both buyers and suppliers evaluate the performance and take corrective actions on the basis of such outcomes as tangible, intangible, and/or side effects. The measurement of trust used for the present study was developed on the basis of the studies of Mayer, Davis and Schoorman (1995) and Mayer and Davis (1999). Based on their recommendations, the three dimensions of trust used for the study include ability, benevolence, and integrity. The original questions were adjusted to the context of the transactions of business services. For example, a question such as "He/she has professional capabilities" has been changed to "The salesperson showed professional capabilities while we talked about our products." The measurement used for this study differs from those used in previous studies (Rotter 1967; Sullivan and Peterson 1982; Dwyer and Oh 1987). The measurements of the antecedents and consequences of trust used for this study were developed on the basis of Doney and Cannon (1997). The original questions were adjusted to the context of transactions in business services. In particular, questions were developed for both buyers and suppliers to address the following factors: reputation (integrity, customer care, good-will), market standing (company size, market share, positioning in the industry), willingness to customize (product, process, delivery), information sharing (proprietary information, private information), willingness to maintain relationships, perceived professionalism, authority empowerment, buyer-seller similarity, and contact frequency. As a consequential variable of trust, relational performance was measured. Relational performance is classified into tangible effects, intangible effects, and side effects. Tangible effects include financial performance; intangible effects include improvements in relations, network developing, and internal employee satisfaction; side effects include those not included either in the tangible or intangible effects. Three hundred fifty pairs of companies were contacted, and one hundred five pairs of companies responded. After deleting five company pairs because of incomplete responses, one hundred five pairs of companies were used for data analysis. The response ratio of the companies used for data analysis is 30% (105/350), which is above the average response ratio in industrial marketing research. As for the characteristics of the respondent companies, the majority of the companies operate service businesses for both buyers (85.4%) and suppliers (81.8%). The majority of buyers (76%) deal with consumer goods, while the majority of suppliers (70%) deal with industrial goods. This may imply that buyers process the incoming material, parts, and components to produce the finished consumer goods. As indicated by their report of the length of acquaintance with their partners, suppliers appear to have longer business relationships than do buyers. Hypothesis 1 tested the effects of buyer-supplier characteristics on trust. The salesperson's professionalism (t=2.070, p<0.05) and authority empowerment (t=2.328, p<0.05) positively affected buyers' trust toward suppliers. On the other hand, authority empowerment (t=2.192, p<0.05) positively affected supplier trust toward buyers. For both buyers and suppliers, the degree of authority empowerment plays a crucial role in the maintenance of their trust in each other. Hypothesis 2 tested the effects of buyerseller relational characteristics on trust. Buyers tend to trust suppliers, as suppliers make every effort to contact buyers (t=2.212, p<0.05). This tendency has also been shown to be much stronger for suppliers (t=2.591, p<0.01). On the other hand suppliers trust buyers because suppliers perceive buyers as being similar to themselves (t=2.702, p<0.01). This finding confirmed the results of Crosby, Evans, and Cowles (1990), which reported that suppliers and buyers build relationships through regular meetings, either for business or personal matters. Hypothesis 3 tested the effects of trust on perceived risk. It has been found that for both suppliers and buyers the lower is the trust, the higher is the perceived risk (t=-6.621, p<0.01 for buyers; t=-2.437, p<0.05). Interestingly, this tendency has been shown to be much stronger for buyers than for suppliers. One possible explanation for this higher level of perceived risk is that buyers normally perceive higher risks than do suppliers in transactions involving business services. For this reason, it is necessary for suppliers to implement risk reduction strategies for buyers. Hypothesis 4 tested the effects of trust on information searching. It has been found that for both suppliers and buyers, contrary to expectation, trust depends on their partner's reputation (t=2.929, p<0.01 for buyers; t=2.711, p<0.05 for suppliers). This finding shows that suppliers with good reputations tend to be trusted. Prior experience did not show any significant relationship with trust for either buyers or suppliers. Hypothesis 5 tested the effects of trust on supplier/buyer selection. Unlike buyers, suppliers tend to trust buyers when they think that previous transactions with buyers were important (t=2.913 p<0.01). However, this study did not show any significant relationship between source loyalty and the trust of buyers in suppliers. Hypothesis 6 tested the effects of trust on relational performances. For buyers and suppliers, financial performance reportedly improved when they trusted their partners (t=2.301, p<0.05 for buyers; t=3.692, p<0.01 for suppliers). It is interesting that this tendency was much stronger for suppliers than it was for buyers. Similarly, competitiveness was reported to improve when buyers and suppliers trusted their partners (t=3.563, p<0.01 for buyers; t=3.042, p<0.01 for suppliers). For suppliers, efficiency and productivity were reportedly improved when they trusted buyers (t=2.673, p<0.01). Other performance indices showed insignificant relationships with trust. The findings of this study have some strategic implications. First and most importantly, trust-based transactions are beneficial for both suppliers and buyers. As verified in the study, financial performance can be improved through efforts to build and maintain mutual trust. Similarly, competitiveness can be increased through the same kinds of effort. Second, trust-based transactions can facilitate the reduction of perceived risks inherent in the purchasing situation. This finding has implications for both suppliers and buyers. It is generally believed that buyers perceive higher risks in a highly involved purchasing situation. To reduce risks, previous studies have recommended that suppliers devise risk-reducing tactics. Moving beyond these recommendations, the present study uniquely focused on the bilateral perspective of perceived risk. In other words, suppliers are also susceptible to perceived risks, especially when they supply services that require very technical and sophisticated manipulations and maintenance. Consequently, buyers and suppliers must solve problems together in close collaboration. Hence, mutual trust plays a crucial role in the problem-solving process. Third, as found in this study, the more authority a salesperson has, the more he or she can be trusted. This finding is very important with regard to tactics. Building trust is a long-term assignment; however, when mutual trust has not been developed, suppliers can overcome the problems they encounter by empowering a salesperson with the authority to make certain decisions. This finding applies to suppliers as well.

  • PDF