• Title/Summary/Keyword: Buffering capacity of soil

Search Result 40, Processing Time 0.023 seconds

Effect of Acid Buffering Capacity and Soil Component Remediation of Soil Contaminated with Phenanthrene using Electrokinetic-Fenton Process (산 완충능력과 토양 성분이 동전기-펜톤 공정에 의한 phenanthrene 오염토양 정화에 미치는 영향)

  • Kim, Jung Hwan;Na, So Jeong;Park, Joo Yang;Byun, Young Deog
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.129-136
    • /
    • 2013
  • This research was conducted to investigate effects of acid buffering capacity and soil component in treatment of phenanthrene using electrokinetic-Fenton process. In Hadong clay of high acid buffering and low iron oxide content, it was difficult to oxidize phenanthrene due to shortage of iron catalyst and scavenger effect of carbonate minerals. The desorbed phenanthrene conductive to Fenton oxidation was transported toward cathode by electroosmotic flow. However, in Youngdong illitic clay, oxidation of phenanthrene near anode readily occurred compared to Hadong clay due to high iron content and low acid buffering capacity.

Chemical Indices of Soil Quality: Effects of Heavy Metal Additions

  • Yang, Jae-E.;Choi, Moon-Heon;Lee, Wi-Young;Kim, Jeong-Je;Jung, Yeong-Sang
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.587-594
    • /
    • 1998
  • The objective of this research was to characterize effects of Cu or Cd additions on chemistry of soil quality indices, such as pH, EC, cation distribution and buffering capacity. Metals were added at rates ranging from 0 to 400 mg $kg^{-1}$ of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable fractions. Adsorption of the added metals released cations into soil solution causing increases of ionic strength of soil solution. At metal additions of $200{\sim}400\;mg\;kg^{-1}$, EC of soil solution increased to as much as $2{\sim}4\;m^{-1}$; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations than monovalent cations were exchanged by Cu or Cd adsorption. The nutrient buffering capacity of soils was decreased due to the metal adsorption and release of cations. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu $kg^{-1}$ addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

A Study on the determination of the potassium supplying power of paddy soils by $^{40}K$ application ($^{40}K$을 이용(利用)한 답토양(畓土壤)의 가리(加里) 공급력(供給力) 측정법 연구(測定法 硏究))

  • Kim, Tai-Soon
    • Applied Biological Chemistry
    • /
    • v.15 no.2
    • /
    • pp.143-162
    • /
    • 1972
  • Based on the concentration of $^{40}K$ naturally occurring radioisotope of potassium, a method for the determination of total potassium in soils and plants was developed. The method was extended to evaluate the potassium supplying power of soils by taking the ratio of exchangeable potassium to total potassium $(K_{ex}/K_t)$, termed the potassium buffering capacity. Using this as index, it was observed that the release of potassium from soil fellows the from order reaction. A linear relationship was found between the potassium buffering capacity and the release constant of potassium or mica content of the clay. Similarly the potassium buffering capacity was also closely correlated with total uptake of potassium by rice plant. Hence it is concluded that the method for determining of the potassium buffering capacity could be veil applied to characterize the potassium availability of soils. The method for the determination of potassium is characterized by (1) The efficient measurement of the weak beta activity emissions from the samples, (2) identification of $^{40}K$, (3) calculation of total potassium content using the proportional constant of $^{40}K$ of samples to that of the standard. Difference in the potassium supplying power of soils due to soil types was also evaluated with the use of this technique. The degree of the potassium supplying power was in the order of soil types as red-yellow podzolic and lateric soils, basaltic materials(Rvd)> low-humic gley and alluvial soils, alluvial plains and food plains(Apa)> low-humic gley soils, nearly level to sloping local alluvial plains and slopes(Afb)> low-humic gley and alluvial soils, fluvio-marine plains (Fma).

  • PDF

Cation Leaching from Soils Percolated with Simulated Sulfuric Acid Rainn (人工酸性 빗물에 의한 여러 土壤으로부터의 이온 洗脫)

  • Rhyu, Tae-Cheol;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1993
  • Soils of four combinations, sand with high content of organic matter(SL), sand with low content of OM(SS), siltyl loam with high content of OM(LL) and silty loam with low content OM (LS), were filled on column and then percolated with simulated sulfuric acid rain with pH 5.6, 4.0, 3.5, 3.0 and 2.5. From soil leachates, pH and concentrations of basic cations and Al were determined. Cation concentrations in the leachates increased as pH of the rain decreased. The orders of buffering capacity of soil, leachability of cation from soil, leaching sensitivity of ion andbase saturation sensitivity of soil to acidity of the rain water were SS$\leq$K <$\leq$LL

  • PDF

Effect of Acid Deposition on the Acidification of Surface Water II : Column and the Field Studies (산성강하물이 지표수의 산성화에 미치는 영향 II: 컬럼연구 및 현장조사)

  • 김영관;우경식
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.35-44
    • /
    • 1997
  • A column study using artificial acid rain was conducted to evaluate the buffering capacities in soil layer and host rock. In an effort to compare the effect of composition of host root two valleys of which compositions of host rock are different were chosen within the study area and the pHs of the water flowing in the valleys were measured from May, 1996 to October, 1996. The pHs of the artificial acid rain prepared by adding appropriate amounts of both sulfuric and nitric acids to distilled water were 3, 4, and 5, and the column effluents were analyzed for major cations and anions. The cation exchange capacities(CECs) of A Horizon and the B Horizon were 9.68 and 6.16 meq/100g, respectively, Compared to the B Horizon, the pH in the column effluent of A Horizon with larger CEC was higher. The sums of $Ca^{2+}$, $Mg^{2+}$, $Na^{+}$in the column effluents gradually decreased, indicating the loss of CEC by acid rain. The field study showed that pHs of the surface water in the valleys increased as the water flows downwards. The magnitude of this buffering capacity was greater for the valley in which smectite in addition to kaolinite and illite was a weathered product of host rocks. This also indicates that host rock as well as soil layer retains the buffering capacity.

  • PDF

Buffer Capacity of So Horizon Soils of Andisols from Jeju Island: Solubility Effect of Mineral Phases (제주도 Andisols Bo층 토양의 산성화에 대한 완충능력: 광물상 용해도 특성의 영향)

  • 이규호;송윤구;문지원;문희수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Buffer capacities for two Bo horizon soils or Andisols developed from different parent materials have been investigated. The titration curves from column leaching experiment show that buffering occurred at pH 4.0 and 6.0. The buffer intensity or soil developed from pyroclastic materials (P-soil) is higher than that from basalts (B-soil). From batch test we have found that proto-imogolite and/or imogolite may control Al solubility as well as $Al(OH) _3$in the moderate acid condition. The buffer intensities ($\beta$) of P-soils were plotted on the theoretical buffering curve of $Al(OH)_3$, while $\beta$ of B-soils approached to that of proto-imogolite, which shows the solubility of short-range-order materials in P-soil control the buffer capacity. Buffering at pH 6.0 is thought to be the result of dissolution of some silicate clays and exchange reactions between $H^{+ }$and base-forming cations. Considering the amount of annual acid precipitation, aluminum solubility of Andisols, and the low BS (Base Saturation percentage), it can be predicted that prolonged acid precipitation will reduce the buffer capacity of soils and lead to soil acidification.

Investigation of Cadmium and Zinc Interactions in Soils using Desorption Isotherms

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • Investigation of Cd and Zn availability in four different soils as affected by the interactions of these two heavy metals was conducted using the metal desorption quantity-intensity (Q/I) isotherms. The soils were artificially contaminated with proper concentrations of Cd and Zn as $CdSO_4\;and\;ZnSO_4$ solutions. DTPA (diethylene triamine pentaacetic acid) - extractable and water-extiactable Cd or Zn from the soils were used as $Q_{Cd}\;or\;Q_{Zn}\;and\;I_{Cd}\;or\;I_{Zn}$ factors, respectively. The coefficient of determination for Cd and Zn desorption Q/I linear regression in the soils ranged from 0.947 to 0.999, which indicated that Q and I factors were closely correlated. The buffering capacity of Cd, $BC_{Cd}$, in the soils decreased with increasing Zn treatments, and the $BC_{Cd}$ values were ranged between 205.8 and 2255.6. The decreases of $BC_{Cd}$ values were mainly dependent upon the increases of $I_{Cd}$ factors. However, Zn buffering capacity. $BC_{Zn}$ decreased with increasing Cd treatments in acidic soils, and increased in neutral and calcareous alkaline soils. The $BC_{Cd}$ values were ranged from 143.2 to 6158.0. The values of $BC_{Zn}$ as influenced by the treatments of Cd were also controlled by the solubility of water-extractable Zn, $I_{Zn}$ factor. The solubility of water-extractable Cd and Zn was significantly dependent upon the changes of soil pH that were impacted by the treatment of Zn and Cd, respectively. Also, the availability of Cd was higher than Zn availability in the acidic and neutral soils, but Zn was higher than Cd in the calcareous alkaline soil.

Buffering Capacity of Four Tree Species against Soil Acidification by Acid Rain and Variations in Nutrient Leaching from Tree Crowns (산성우(酸性雨)에 의(依)한 토양산성화(土壤酸性化)에 대한 4개(個) 수종(樹種)의 완충능력(緩衝能力)과 수관(樹冠)으로부터 양료(養料) 용탈(溶脫) 변이(變異))

  • Han, Sim Hee;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.342-351
    • /
    • 1997
  • The objective of this study was to compare acid-neutralizing and buffering capacity of four tree species against soil acidification by acid rain. About 30-year-old forests composed of Pinus rigida, Alnus hirsuta, Quercus mongolica, and Liriodendron tulipifera in a provincial experimental forest located 15km east from Banwol Industrial Complex in Kyonggido were used in this study. Incident precipitation, throughfall and stemflow, and soil samples were collected from May to September, 1996 to analyze their pH and canon concentrations. Internal leaf pH, external acid neutralizing capacity(ENC), and buffering capacity index(BCI) of leaves were also determined. The incident precipitation showed an average pH of 4.56, with the percentage of acid rain incidents being 74%. The average soil pH of the study area was 4.15. The pH of throughfall and stemflow in all four species was higher than that of precipitation except that of the stemflow of Pinus rigida which showed a pH of 3.73. The throughfall of Liriodendron tulipifera showed the highest pH of 5.38. The pH of throughfall and stemflow showed a positive correlation and no correlation, respectively, with precipitations. The most abundant cation in precipitation was Ca. The canon concentraions in throughfall and stemflow decreased in the following order of K, Na, Ca, and Mg. Cation concentrations in stemflow were highest in Lirioendron tulipifera and lowest in Pines rigida. Nutrient leaching from above ground increased with decreasing pH of precipitation. The pH of stemflow showed a positive correlation with ENC and BCI. The highest values in ENC, BCI, soil pH, and soil cation concentrations were observed in Liriodendron tulipifera, while the lowest values were obtained in Pinus rigida, It was concluded that Liriodendron tulipifera had highest neutralizing capacity against acid rain, while Pinus rigida had the lowest capacity and even promoted acidification of soil.

  • PDF

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

The Remediation Characteristic of Soil Contaminated with Heavy Metal and Total Petroleum Hydrocarbon (TPH) by Enhanced Electrokinetic with Fenton Oxidation and Soil Flushing Method (펜톤 산화와 토양 세정이 보강된 동전기에 의한 중금속 및 총 석유 탄화수소(TPH)로 오염된 토양의 정화 특성)

  • Seo, Seok-Ju;Na, So-Jeong;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.885-893
    • /
    • 2014
  • This research reports the enhanced Electrokinetic (EK) with $H_2O_2$ and sodium dodecyl surfate (SDS), which are commonly used in Fenton oxidation and soil flushing method, in order to remediate soil contaminated with heavy metals and Total Petroleum Hydrocarbons (TPH) simultaneously. In addition, influences of property of soil and concentration of chemical solution were investigated through experiments of different types of soils and varying concentration of chemical reagents. The results indicated, in the experiments using artificially contaminated soil, the highest removal efficiency of heavy metals using 10% $H_2O_2$ and 20mM SDS as electrolytes. However, in the experiments using Yong-San soils (study area), remediation efficiency of heavy metals was decreased because high acid buffering capacity. Through experiment of 20% $H_2O_2$ and 40mM SDS, increased electric current influences the remediation of heavy metals due to decrease in the soil pH. In the experiments of Yong-San soils, the remediation efficiency of TPH was decreased compared with artificially spiked soils because high acid buffering capacity and organic carbon contents. Furthermore, the scavenger effect of SDS influenced TPH oxidation efficiency under the conditions of injected 40mM SDS in the soils. Therefore, the property of soil and concentration of chemical reagents cause the electroosmotic flow, soil pH, remediation efficiency of heavy metals and TPH.