• Title/Summary/Keyword: Buffer-aided relay selection

Search Result 5, Processing Time 0.017 seconds

Energy-efficient Buffer-aided Optimal Relay Selection Scheme with Power Adaptation and Inter-relay Interference Cancellation

  • Xu, Xiaorong;Li, Liang;Yao, Yingbiao;Jiang, Xianyang;Hu, Sanqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5343-5364
    • /
    • 2016
  • Considering the tradeoff between energy consumption and outage behavior in buffer-aided relay selection, a novel energy-efficient buffer-aided optimal relay selection scheme with power adaptation and Inter-Relay Interference (IRI) cancellation is proposed. In the proposed scheme, energy consumption minimization is the objective with the consideration of relay buffer state, outage probability and relay power control, in order to eliminate IRI. The proposed scheme selects a pair of optimal relays from multiple candidate relays, denoted as optimal receive relay and optimal transmit relay respectively. Source-relay and relay-destination communications can be performed within a time-slot, which performs as Full-Duplex (FD) relaying. Markov chain model is applied to analyze the evolution of relay buffer states. System steady state outage probability and achievable diversity order are derived respectively. In addition, packet transmission delay and power reduction performance are investigated with a specific analysis. Numerical results show that the proposed scheme outperforms other relay selection schemes in terms of outage behavior with power adaptation and IRI cancellation in the same relay number and buffer size scenario. Compared with Buffer State relay selection method, the proposed scheme reduces transmission delay significantly with the same amount of relays. Average transmit power reduction can be implemented to relays with the increasing of relay number and buffer size, which realizes the tradeoff between energy-efficiency, outage behavior and delay performance in green cooperative communications.

Relaying Protocols and Delay Analysis for Buffer-aided Wireless Powered Cooperative Communication Networks

  • Zhan, Jun;Tang, Xiaohu;Chen, Qingchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3542-3566
    • /
    • 2018
  • In this paper, we investigate a buffer-aided wireless powered cooperative communication network (WPCCN), in which the source and relay harvest the energy from a dedicated power beacon via wireless energy transfer, then the source transmits the data to the destination through the relay. Both the source and relay are equipped with an energy buffer to store the harvested energy in the energy transfer stage. In addition, the relay is equipped with a data buffer and can temporarily store the received information. Considering the buffer-aided WPCCN, we propose two buffer-aided relaying protocols, which named as the buffer-aided harvest-then-transmit (HtT) protocol and the buffer-aided joint mode selection and power allocation (JMSPA) protocol, respectively. For the buffer-aided HtT protocol, the time-averaged achievable rate is obtained in closed form. For the buffer-aided JMSPA protocol, the optimal adaptive mode selection scheme and power allocation scheme, which jointly maximize the time-averaged throughput of system, are obtained by employing the Lyapunov optimization theory. Furthermore, we drive the theoretical bounds on the time-averaged achievable rate and time-averaged delay, then present the throughput-delay tradeoff achieved by the joint JMSPA protocol. Simulation results validate the throughput performance gain of the proposed buffer-aided relaying protocols and verify the theoretical analysis.

A Novel Relay Selection Technique with Decoded Information in Buffer-Aided Successive Relaying Systems (버퍼기반 연쇄적 중계시스템에서 복호 정보를 활용한 중계기 선택 알고리즘)

  • Lee, Byeong Su;Ban, Tae Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.51-53
    • /
    • 2015
  • In this paper, we propose a new relay selection technique which utilizes interference cancellation with decoding information at multiple relays for buffer-aided successive relaying systems. The transmitting relay is selected if its own transmission to the destination is successful and the number of relays which can successfully decode the data from the source is the maximum at the same time. Simulation results show that the proposed relay selection technique significantly outperforms the conventional relay selection scheme in terms of outage probability.

  • PDF

Performance Analysis of Adaptive Link-Selection Scheme considering Buffer and Channel State Information (버퍼와 채널 상태를 고려한 적응형 링크선택 방안의 성능 분석)

  • Kim, Hyujun;Chung, Young-uk
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.402-407
    • /
    • 2018
  • Link selection strategy has been an important technical issues of relay network. In this paper, we introduce a link selection scheme in the bidirectional, buffer-aided relay network. Three kinds of information such as the states of the queue at the relay buffer, the qualities of the links, and the states of the queues at the user buffer are considered. Throughput and delay performance is evaluated under three cases with different available information.

A Buffer-Aided Successive Relaying Technique with a Priori Decoding Information (선행 복호 정보를 활용한 버퍼기반 연쇄적 중계 기법)

  • Lee, Byeong Su;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.275-280
    • /
    • 2016
  • In this paper, we propose a novel relay selection technique which utilizes a priori decoding information at relays for buffer-aided successive relaying networks. In the conventional relaying schemes, a single relay pair is selected for receiving data from the source and transmitting data to the destination. In the proposed technique, however, all relays except the relay selected for transmitting data to the destination try to decode the received signal from the source, and they store the data if they succeed decoding. The proposed technique selects the relay such that it can succeed its own transmission and it maximizes the number of relays successfully decoding the data from the source at the same time. It is shown that the proposed relaying technique significantly outperforms the conventional buffer-aided relaying schemes in terms of outage probability through extensive computer simulations.