• Title/Summary/Keyword: Buffer Stability

Search Result 294, Processing Time 0.033 seconds

Adhesion Strength and Interface Chemistry with Cr, 50%Cr-50%Ni or Ni Buffer Layer in Cu/buffer Layer/polyimide System (Cu/buffer layer/polyimide 시스템에서 Cr, 50%Cr-50%Ni 및 Ni 버퍼층에 따른 접착력 및 계면화학)

  • Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.119-124
    • /
    • 2009
  • In the microelectronics packaging industry, the adhesion strength between Cu and polyimide and the thermal stability are very important factors, as they influence the performance and reliability of the device. The three different buffer layers of Cr, 50%Cr-50%Ni, and Ni were adopted in a Cu/buffer layer/polyimide system and compared in terms of their adhesion strength and thermal stability at a temperature of $300^{\circ}C$ for 24hrs. A 90-degree peel test and XPS analysis revealed that both the peel strength and thermal stability decreased in the order of the Cr, 50%Cr-50%Ni and Ni buffer layer. The XPS analysis revealed that Cu can diffuse through the thin Ni buffer layer ($200{\AA}$), resulting in a decrease in the adhesion strength when the Cu/buffer layer/polyimide multilayer is heat-treated at a temperature of $300^{\circ}C$ for 24hrs. In contrast, Cu did not diffuse through the Cr buffer layer under the same heat-treatment conditions.

A Study on the Appropriateness Evaluation of Utilization of green buffer zone - Focusing on green buffer zone, Daejeon City Seo-gu (완충녹지 활용의 적정성 평가 -대전시 서구 완충녹지를 대상으로)

  • Kim, Sun Min;Lee, Shi Young
    • Land and Housing Review
    • /
    • v.10 no.4
    • /
    • pp.41-50
    • /
    • 2019
  • This study was started to study the buffer zone of Daejeon metropolitan city in order to study the policy and environment for the suitability evaluation of the use of green buffer zone. The target of the study was selected as the buffer zone of western buffer, which is frequently used in the Daejeon Metropolitan City, and a preliminary index was selected to evaluate the suitability of the green buffer zone. AHP analysis was conducted to increase the reliability of the preliminary indicators and the weight was analyzed by questionnaires to experts and practitioners. In addition, based on the existing statistical data, we rebuilt the green buffer zone and investigated the current condition, and compared and analyzed the green buffer zone and the places where they did not. The results are as follow. First, unlike the statute interpretation that construction can not be done in buffered green spaces, green buffer zones have been utilized in various ways. However, the lack of advanced citizen consciousness of the residents, the responsibility of the responsible person, and the problem of the management office alone are causing problems. Second, according to the results of AHP questionnaire analysis, functional and stability among the appropriateness indexes of green buffer zone utilization were evaluated highly. Park accessibility and utilization potential also weighed somewhat, and it was judged that the epochal trend was more important in the use of green buffer zones. Third, analysis of the status of Western green buffer zones in Daejeon showed that the utilization rate was more than half. This suggests the necessity of judging the appropriateness of the application of the green buffer zone effectively due to the change of the perception of the green buffer zone of the residents. Fourth, as a result of comparing and analyzing the site where the site is used and the site where it is not, it is found that it is used within a range that does not greatly affect each index. However, as the stability has decreased, we have decided that the utilization method is most damaging to the green zone, and we should strive to improve the stability in future. Finally, the analysis of a red clay road and a red clay road sites decreased from Class I of stability to Grade II. However, the fall figure showed a difference between the 13 % drop rate of the target location and the 5% decline rate of utilization. The difference was analyzed as the difference of width of a red clay road. This can be regarded as one of the ways of damaging the green zone to the minimum extent, which is a great advantage in selecting the future utilization plan.

Basel III Effects on Bank Stability: Empirical Evidence from Emerging Countries

  • ASGHAR, Muhammad;RASHID, Abdul;ABBAS, Zaheer
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.347-354
    • /
    • 2022
  • This article examines the influence of Basel III reforms, risk management, and banking sector efficiency on banks' financial stability in emerging countries. The data for this study is collected from various sources. Based on the GDP classification of IMF, the top 22 countries were selected as the sample. The sampling frame includes all six regions of the world including 482 banks and 3022 observations in total. The empirical analysis is carried out by estimating the random effects models. It is found that the effects of capital buffer, liquidity, and risk management practices are significant on financial stability. It is also noticed that the capital buffer has a constructive and significant influence on financial stability. However, liquidity management shows a mixed impact, as in some countries, its impact is positive and significant while, in other countries, it is insignificant. Risk management practices have an overall positive influence on financial stability in the case of large economies. However, results are insignificant in the case of small economies. Bank-specific variables, namely profitability, size, and efficiency have a positive whereas, loan quality has a negative impact on financial stability in the emerging countries. GDP has a positive impact on financial stability whereas inflation and unemployment both have a negative effect on financial stability.

A Buffer-constrained Adaptive Quantization Algorithm for Image Compression (버퍼제약에 의한 영상압축 적응양자화 알고리듬)

  • 박대철;정두영
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.3
    • /
    • pp.249-254
    • /
    • 2002
  • We consider a buffer-constrained adaptive quantization algorithm for image compression. Buffer control algorithm was considered with source coding scheme by some researchers and recently a formal description of the algorithm in terms of rate-distortion has been developed. We propose a buffer control algorithm that incorporates the buffer occupancy into the Lagrange multiplier form in a rate-distortion cost measure. Although the proposed algorithm provides the suboptimal performance as opposed to the optimal Vieterbi algorithm, it can be implemented with very low computaional complexity. In addition stability of this buffer control algorithm has been mentioned briefly using Liapnov stability theory.

  • PDF

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

A Study on the Stability of DOPC Liposome (염의 농도에 따른 DOPC 리포좀의 안정성에 관한 연구)

  • Won, Doo-Hyun;Kim, Sun-Young;Lim, Gyu-Nam;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • In this study, DOPC liposomes were prepared with distilled water, phosphate buffer and phosphate buffered saline to evaluate the effects of salt on the stability of DOPC liposome. The changes in physical properties (likeparticle size and zeta potential) of liposome were measured after adding the salt. Liposomes were diluted 40 times and 80 times with hydration solvent to confirm the effect of dilution. Consequently, the stability of liposome was maintained up to 40 times dilution with hydration solvent. The liposome that prepared with distilled water was diluted with distilled water, phosphate buffer and phosphate buffered saline, and the liposome that prepared with phosphate buffer was diluted with phosphate buffer and phosphate buffered saline to evaluate the salt-induced changes in particle size and zeta potentia. As results, the particle size increased slightly and zeta potential became closer to 0 when the salt concentration was increased. In conclusion, particle size and zeta potential of liposome could be reasonable factors to evaluate the stability of liposome. In addition, we suggest that salt concentration of hydration solvent has a significant effect on the stability of liposome.

Comparison of stabilities in carbon nanotubes grown on a submicron-sized tip in terms of various buffer and catalyst materials (미세크기 팁 위에 성장된 탄소 나노튜브의 완충막 및 촉매 금속에 따른 안정성 비교)

  • Kim, Jong-Pil;Kim, Young-Kwang;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1224-1225
    • /
    • 2008
  • The results of the experiment that was conducted on the electron emission property and the long-term stability of the emission current in various carbon nanotubes (CNTs)-based field emitters with a CNT/catalyst/buffer/W-tip configuration are presented herein. CNT-based field emitters were fabricated by varying the (TiN, Al/Ni/TiN) buffer layer and the (Ni, Co) catalyst material. This study aimed to elucidate how the buffer layers and catalyst materials affect the structural properties of CNTs and the long-term stability of CNT emitters. Raman spectroscopy, field emission SEM, and high-resolution TEM were used to analyze the crystalline structure, surface morphologies, and nanostructures of all the grown CNTs. X-ray photoelectron spectroscopy (XPS) was used to monitor the chemical bonds of all the buffer layers and catalysts. Electron emission measurement and a long-term (up to 40h) stability test were carried out using a compactly designed field emission measurement system.

  • PDF

Stability of ITO/Buffer Layer/TPD/Alq3/Cathode Organic Light-emitting Diode

  • Chung, Dong-Hoe;Ahn, Joon-Ho;Oh, Hyun-Seok;Park, Jung-Kyu;Lee, Won-Jae;Choi, Sung-Jai;Jang, Kyung-Uk;Shin, Eun-Chul;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.260-264
    • /
    • 2007
  • We have studied stability in organic light-emitting diode depending on buffer layer and cathode. A transparent electrode of indium-tin-oxide(ITO) was used as an anode. An electron injection energy barrier into organic material is different depending on a work function of cathodes. Theoretically, the energy barriers for the electron injection are 1.2 eV, -0.1 eV, and 0.0 eV for Al, LiAl, and LiF/Al at 300 K, respectively. We considered the cases that holes are injected to organic light-emitting diode. The hole injection energy barrier is about 0.7 eV between ITO and TPD without buffer layer. For hole-injection buffer layers of CuPc and PEDOT:PSS, the hole injection energy barriers are 0.4 eV and 0.5 eV, respectively. When the buffer layer of CuPc and PEDOT:PSS is existed, we observed the effects of hole injection energy barrier, and a reduction of operating-voltage. However, in case of PVK buffer layer, the hole injection energy barrier becomes high(1.0 eV). Even though the operating voltage becomes high, the efficiency is improved. A device structure for optimal lifetime condition is ITO/PEDOT:PSS/TPD/$Alq_3$/LiAl at an initial luminance of $300cd/m^2$.

Stability and Percutaneous Transport of Prostaglandin $E_1$ (프로스타글란딘 $E_1$의 안정성 및 경피흡수)

  • Shin, Dong-Suk;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.337-341
    • /
    • 1999
  • We have studied the stability and transdennal flux of prostaglandin $E_1\;(PGE_1)$ from various donor solutions through hairless mouse skin. Stability in HEPES buffer or in propylene glycol (PG) solution where enhancer (oleic acid (OA), propylene glycol monolaurate (PGML), transcutol (TC), ethanol (EtOH))s dissolved was investigated. $$PGE_1 was not stable in HEPES buffer. The concentration of $$PGE_1 decreased continuously for 7 days, and the degradation rate constant was $0.0028\;h^{-1}$, assuming first order reaction. The effect of current or penetration enhancer on the degradation was minimal. Percutaneous transport from HEPES buffer by passive or iontophoretic delivery without enhancer was close to nil. When OA or PGML was used together with PG, both passive and iontophoretic flux increased. PGML showed better enhancing effect than OA. Flux by cathodal delivery was about 2 times larger than that by passive delivery. Flux by anodal delivery was lower than that by passive delivery. TC and EtOH also increased the transdermal flux, but the effect was not as good as that observed when OA or PGML was used. These stability and flux data provide important information on how to formulate the patch, which will be the next step of this work, and on the polarity of current to use during iontophoresis.

  • PDF

Analyses on Thermal Stability and Structural Integrity of the Improved Disposal Systems for Spent Nuclear Fuels in Korea

  • Lee, Jongyoul;Kim, Hyeona;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.21-36
    • /
    • 2020
  • With respect to spent nuclear fuels, disposal containers and bentonite buffer blocks in deep geological disposal systems are the primary engineered barrier elements that are required to isolate radioactive toxicity for a long period of time and delay the leakage of radio nuclides such that they do not affect human and natural environments. Therefore, the thermal stability of the bentonite buffer and structural integrity of the disposal container are essential factors for maintaining the safety of a deep geological disposal system. The most important requirement in the design of such a system involves ensuring that the temperature of the buffer does not exceed 100℃ because of the decay heat emitted from high-level wastes loaded in the disposal container. In addition, the disposal containers should maintain structural integrity under loads, such as hydraulic pressure, at an underground depth of 500 m and swelling pressure of the bentonite buffer. In this study, we analyzed the thermal stability and structural integrity in a deep geological disposal environment of the improved deep geological disposal systems for domestic light-water and heavy-water reactor types of spent nuclear fuels, which were considered to be subject to direct disposal. The results of the thermal stability and structural integrity assessments indicated that the improved disposal systems for each type of spent nuclear fuel satisfied the temperature limit requirement (< 100℃) of the disposal system, and the disposal containers were observed to maintain their integrity with a safety ratio of 2.0 or higher in the environment of deep disposal.