• Title/Summary/Keyword: Buenos Aires

Search Result 42, Processing Time 0.018 seconds

Farm Land Use Classification for the Planning of Planting of Eucalyptus Spp. at Mato Grosso do Sul of Brazil Using Remote Sensing and Geographic Information System (브라질 Mato Grosso do Sul 주에서의 유칼리나무 식재계획(植栽計劃)을 위한 농장토지이용구분(農場土地利用區分)에 관한 연구(硏究) - 원격탐사기술(遠隔探査技術)과 지리정보(地理情報)시스템(GIS)의 적용(適用) -)

  • Woo, Jong-Choon;Nobrega, Ricardo Campos;Imana-Encinas, Jose
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.157-168
    • /
    • 1999
  • This paper analyzed vegetation and land use classification, slope and permanent preservation and legal reserves on the farm Jangada and Jamaica-Mato Grosso do Sul, Brazil, using satellite image for assisting the planning of planting Eucalyptus spp. This part of the State of Mato Grosso do Sul represents an important geopolitcal area, since it is located on the borders of Bolivia and Paraguay. Also exportation of goods can be achieved through hydrovias extending to Buenos Aires, Argentina-through the Paraguay River. Also there are road and railroad connection which link the soutreastern part of Brazil to the Andean countries. The vegetation map from sheet SF 21-Campo Grande of the RADAMBRASIL Project was used as the basis for the preliminary interpretation of coverage, and complemented by a visit of the field. After the initial interpretation of the image, definition of classes of use and land occupation were made, and files of spectral signatures were created. On the farms Jamaica and Jangada Open Arboreal Savanna and Grass Savanna are the predominant physiognomies occupying 68% of total area. In spite of the results being satisfactory at the present moment, the development of this project should be revised and adjusted based on the evaluations already made, including a greater detailing of environmental components, principally with respect to soil and topography.

  • PDF

Alternaria mycotoxins and its incidence in fruits and vegetables

  • Patriarca, Andrea
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.13-13
    • /
    • 2018
  • Alternaria is a ubiquitous fungal genus, widely distributed in the environment and a range of different habitats. It includes both plant pathogenic and saprophytic species, which can affect crops in the field or cause post-harvest spoilage of plant fruits and kernels. Numerous Alternaria species cause damage to agricultural products including cereal grains, fruits and vegetables, and are responsible for severe economic losses worldwide. Most Alternaria species have the ability to produce a variety of secondary metabolites, which may play important roles in plant pathology as well as food quality and safety. Alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) and altenuene (ALT) are considered the main Alternaria compounds thought to pose a risk to human health. However, food-borne Alternaria species are able to produce many additional metabolites, whose toxicity has been tested incompletely or not tested at all. Both alternariols are mutagenic and their presence in cereal grain has been associated with high levels of human esophageal cancer in China. TeA exerts cytotoxic and phytotoxic properties, and is acutely toxic in different animal species, causing hemorrhages in several organs. The possible involvement of TA in the etiology of onyalai, a human hematological disorder occurring in Africa, has been suggested. Altertoxins (ALXs) have been found to be more potent mutagens and acutely toxic to mice than AOH and AME. Other metabolites, such as TEN, are reported to be phytotoxins, and their toxicity on animals has not been demonstrated up to now. Vegetable foods infected by Alternaria rot are obviously not suitable for consumption. Thus, whole fresh fruits are not believed to contribute significantly with Alternaria toxins to human exposure. However, processed vegetable products may introduce considerable amounts of these toxins to the human diet if decayed or moldy fruit is not removed before processing. The taxonomy of the genus is not well defined yet, which makes it difficult to establish an accurate relationship between the contaminant species and their associated mycotoxins. Great efforts have been made to organize taxa into subgeneric taxonomic levels, especially for the small-spored, food associated species, which are closely related and constitute the most relevant food pathogens from this genus. Several crops of agricultural value are susceptible to infection by different Alternaria species and can contribute to the entry of Alternaria mycotoxins in the food chain. The distribution of Alternaria species was studied in different commodities grown in Argentina. These food populations were characterized through a polyphasic approach, with special interest in their secondary metabolite profiles, to understand their full chemical potential. Alternaria species associated with tomato, bell pepper, blueberry, apples and wheat cultivated in Argentina showed a surprisingly high metabolomic and mycotoxigenic potential. The natural occurrence of Alternaria toxins in these foods was also investigated. The results here presented will provide background for discussion on regulations for Alternaria toxins in foods.

  • PDF