• Title/Summary/Keyword: Buckling plate

Search Result 753, Processing Time 0.019 seconds

Buckling of rectangular plates with mixed edge supports

  • Xiang, Y.;Su, G.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.401-416
    • /
    • 2002
  • This paper presents a domain decomposition method for buckling analysis of rectangular Kirchhoff plates subjected to uniaxial inplane load and with mixed edge support conditions. A plate is decomposed into two rectangular subdomains along the change of the discontinuous support conditions. The automated Ritz method is employed to derive the governing eigenvalue equation for the plate system. Compatibility conditions are imposed for transverse displacement and slope along the interface of the two subdomains by modifying the Ritz trial functions. The resulting Ritz function ensures that the transverse displacement and slope are continuous along the entire interface of the two subdomains. The validity and accuracy of the proposed method are verified with convergence and comparison studies. Buckling results are presented for several selected rectangular plates with various combination of mixed edge support conditions.

Plastic Buckling Analysis of Rectangular Plates Considering Plastic Compressibility (소성 압축성을 고려한 평판의 소성 좌굴해석)

  • Chan-Ho Shin;Young-Bok Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.141-146
    • /
    • 1995
  • In this study the plastic buckling analysis of a simply supported plate under biaxial compression/tension loading is carried out considering the plastic compressibility. Plastic buckling of a biaxially loaded rectangular plate is governed by two kinds of mechanism, the tension strengthening and plastic weakening under which the optimal combination of tension and compression is obtained for the buckling strength. To consider the plastic compressibility, the Drucker-Prayer plastic potential is employed. General eigenvalue equations are derived for a rectangular plate within the framework of small strain plasticity and isotropic hardening.

  • PDF

Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.691-729
    • /
    • 2018
  • In this paper the hygro-thermo-mechanical vibration and buckling behavior of embedded FG nano-plates are investigated. The Eringen's and Gurtin-Murdoch theories are applied to study the small scale and surface effects on frequencies and critical buckling loads. The effective material properties are modeled using Mori-Tanaka homogenization scheme. On the base of RPT and HSDPT plate theories, the Hamilton's principle is employed to derive governing equations. Using iterative and GDQ methods the governing equations are solved and the influence of different parameters on natural frequencies and critical buckling loads are studied.

Influence of material composition on buckling response of FG plates using a simple plate integral model

  • Bakhti, Karima;Sekkal, Mohamed;Adda Bedia, E.A.;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.447-457
    • /
    • 2020
  • In this study, a simple two-dimensional shear deformation model is employed for buckling analysis of functionally graded (FG) plates. The proposed theory has a kinematic with integral terms which considers the influence of shear deformation without using "shear correction factors". The impact of varying material properties and volume fraction of the constituent on buckling response of the FG plate is examined and discussed. The benefit of this theory over other contributions is that a number of variables is reduced. The basic equations that consider the influence of transverse shear stresses are derived from the principle of virtual displacements. The analytical solutions are obtained utilizing the "Navier method". The accuracy of the proposed theory is proved by comparisons with the different solutions found in the literature.

A Study on the Buckling & Ultimate Strength for Ship's Plate with Cutout (선체유공판의 좌굴 및 최종강도에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.167-172
    • /
    • 2003
  • Place that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension. and thickness in this investigation. Used program applied ANSYS F.E.M code transformation finite element law that is mediocrity finite element analysis code.

  • PDF

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

Buckling analysis of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers reinforced by graphene platelets

  • Pooya, Nikbakhsh;Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.331-349
    • /
    • 2022
  • In the present work, we proposed an analytical study on buckling behavior of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers such as BaTiO3 and CoFe2O4 reinforced by graphene platelets (GPLs). The Halpin-Tsai micromechanics model is used to describe the properties of the polymeric core. The governing equations of equilibrium are obtained from first-order shear deformation theory (FSDT) and the Navier's method is employed to solve the equations. The results show the effect of different parameters such as thickness, length, weight fraction of GPLs, and also effect of electric and magnetic field on critical buckling load. The result of this study can be obtained in the aerospace industry and also in the design of sensors and actuators.

Experimental determination of the buckling load of a flat plate by the use of dynamic parameters

  • Go, Cheer Germ;Liou, Cheng Dar
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.483-490
    • /
    • 2000
  • After manufacturing a structure, the assembly of structural components is often not as perfect as expected due to the immaturity of current engineering techniques. Thus the actual buckling load for an element is sometimes not consistent with that predicted in the design. For design considerations, it is necessary to establish an analytical method for determining the buckling load experimentally. In this paper, a dynamic method is described for determining the linear buckling loads for elastic, perfectly flat plates. The proposed method does not require the application of in-plane loads and is feasible for arbitrary types of boundary conditions. It requires only the vibrational excitation of the plate. The buckling load is determined from the measured natural frequencies and vibration mode shapes.

Development of Wave Prediction Model in Flat Rolling (압연 중 급준도 모델 개발)

  • Kim, J.S.;Hwang, S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.48-51
    • /
    • 2009
  • Excessive wavy surfaces formed by a cold or hot-rolling process in a thin plate degrade the value of the plate significantly, which is called flatness problem in the industry. It is a result of post-buckling due to the residual stress caused by the rolling process. A unique difficulty of the problem as a buckling problem is that the buckling length is not given but has to be found. a new approach is developed to solve the flatness problem by extending a classic post-buckling analysis method based on the energy principle. The approach determines the buckling length and amplitude. The new solution approach can be used to determine the condition for the maximum rolling production that does not cause the flatness problem.

  • PDF

Shear buckling analysis of laminated plates on tensionless elastic foundations

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.697-709
    • /
    • 2017
  • The current study addresses the local buckling analysis of an infinite thin rectangular symmetrically laminated composite plate restrained by a tensionless Winkler foundation and subjected to uniform in-plane shear loading. An analytic method (i.e., one-dimensional mathematical method) is used to achieve the analytical solution estimate of the contact buckling coefficient. In addition, to study the effect of ply angle and foundation stiffness on the critical buckling coefficients for the laminated composite plates, the parametric studies are implemented. Moreover, the convergence for finite element (FE) mesh is analysed, and then the examples in the parametric study are validated by the FE analysis. The results show that the FE analysis has a good agreement with the analytical solutions. Finally, an example with the analytical solution and FE analysis is presented to demonstrate the availability and feasibility of the presented analytical method.