• Title/Summary/Keyword: Buckling performance

Search Result 426, Processing Time 0.023 seconds

Parallel computation for transcendental structural eigenproblems

  • Kennedy, D.;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.635-644
    • /
    • 1997
  • The paper reviews the implementation and evaluation of exact methods for the computation of transcendental structural eigenvalues, i.e., critical buckling loads and natural frequencies of undamped vibration, on multiple instruction, multiple data parallel computers with distributed memory. Coarse, medium and fine grain parallel methods are described with illustrative examples. The methods are compared and combined into hybrid methods whose performance can be predicted from that of the component methods individually. An indication is given of how performance indicators can be presented in a generic form rather than being specific to one particular parallel computer. Current extensions to permit parallel optimum design of structures are outlined.

Structural Performance Test of Optimized Outer Tie Rod (아우터타이로드 최적화 모델의 구조성능시험)

  • Kim, Jong-Kyu;Seo, Sun-Min;Kim, Young-Jun;Lee, Dong-Jin;Lee, Seul;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.82-87
    • /
    • 2012
  • The outer tie rod that is a part of steering system connects the steering gear to the steering knuckle via the inner tie rod. The formal study suggested the optimized structural design of an outer tie rod installed in a passenger car. Its weight is 284.7g, which is 57.2% lighter weight than initial steel model. This study validates the optimized design of the outer tie rod considering buckling and durability. The assembled unit of an inner tie rod and outer tie rod is utilized to perform the test of the bending strength of the outer tie rod. On the contrary, 1/2 car is utilized to perform the test of its durability performance.

Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube (강관구속 고강도 철근콘크리트 기둥의 내진성능)

  • 한병찬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)

  • Khorami, M.;Khorami, M.;Alvansazyazdi, M.;Shariati, M.;Zandi, Y.;Jalali, A.;Tahir, M.M.
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.531-538
    • /
    • 2017
  • In this paper, the seismic behavior of BRBF structures is studied and compared with special concentric braced frames (SCBF). To this purpose, three BRBF and three SCBF structures with 3, 5 and 10 stories are designed based on AISC360-5 and modelled using OpenSees. These structures are loaded in accordance with ASCE/SEI 7-10. Incremental nonlinear dynamic analysis (IDA) are performed on these structures for 28 different accelerograms and the median IDA curves are used to compare seismic capacity of these two systems. Results obtained, indicates that BRBF systems provide higher capacity for the target performance level in comparison with SCBF systems. And structures with high altitude (in this study, 5 and 10 stories) with the possibility of exceeding the collapse prevention performance level, further than lower altitude (here 3 floors) structures.

Topology Design Optimization of Plate Buckling Problems Considering Buckling Performance (좌굴성능을 고려한 평판 좌굴문제의 위상설계최적화)

  • Lee, Seung-Wook;Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • In this paper we perform a linearized buckling analysis using the Kirchhoff plate theory and the von Karman nonlinear strain-displacement relation. Design sensitivity analysis(DSA) expressions for plane elasticity and buckling problems are derived with respect to Young's modulus and thickness. Using the design sensitivity, we can formulate the topology optimization method for minimizing the compliance and maximizing eigenvalues. We develop a topology optimization method applicable to plate buckling problems using the prestress for buckling analysis. Since the prestress is needed to assemble the stress matrix for buckling problem using the von Karman nonlinear strain, we introduced out-of-plane motion. The design variables are parameterized into normalized bulk material densities. The objective functions are the minimum compliance and the maximum eigenvalues and the constraint is the allowable volume. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with the finite difference ones and the topology optimization yields physically meaningful results.

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Finite element modelling of back-to-back built-up cold-formed stainless-steel lipped channels under axial compression

  • Roy, Krishanu;Lau, Hieng Ho;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.37-66
    • /
    • 2019
  • In cold-formed steel structures, such as trusses, wall frames and portal frames, the use of back-to-back built-up cold-formed stainless-steel lipped channels as compression members are becoming increasingly popular. The advantages of using stainless-steel as structural members are corrosion resistance and durability, compared with carbon steel. The AISI/ASCE Standard, SEI/ASCE-8-02 and AS/NZS do not include the design of stainless-steel built-up channels and very few experimental tests or finite element analyses have been reported in the literature for such back-to back cold-formed stainless-steel channels. Current guidance by the American Iron and Steel Institute (AISI) and the Australian and New Zealand (gAS/NZS) standards for built-up carbon steel sections only describe a modified slenderness approach, to consider the spacing of the intermediate fasteners. Thus, this paper presents a numerical investigation on the behavior of back-to-back cold-formed stainless-steel built-up lipped channels. Three different grades of stainless steel i.e., duplex EN1.4462, ferritic EN1.4003 and austenitic EN1.4404 have been considered. Effect of screw spacing on the axial strength of such built-up channels was investigated. As expected, most of the short and intermediate columns failed by either local-global or local-distortional buckling interactions, whereas the long columns, failed by global buckling. All three grades of stainless-steel stub columns failed by local buckling. A comprehensive parametric study was then carried out covering a wide range of slenderness and different cross-sectional geometries to assess the performance of the current design guidelines by AISI and AS/NZS. In total, 647 finite element models were analyzed. From the results of the parametric study, it was found that the AISI & AS/NZS are conservative by around 10 to 20% for cold-formed stainless-steel built-up lipped channels failed through overall buckling, irrespective of the stainless-steel grades. However, the AISI and AS/NZS can be un-conservative by around 6% for all three grades of stainless-steel built-up channels, which failed by local buckling.

Mechanical behavior of coiled tubing over wellhead and analysis of its effect on downhole buckling

  • Zhao, Le;Gao, Mingzhong;Li, Cunbao;Xian, Linyun
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.199-210
    • /
    • 2022
  • This study build finite element analysis (FEA) models describing the bending events of coiled tubing (CT) at the wellhead and trips into the hole, accurately provide the state of stress and strain while the CT is in service. The bending moment and axial force history curves are used as loads and boundary conditions in the diametrical growth models to ensure consistency with the actual working conditions in field operations. The simulation diametrical growth results in this study are more accurate and reasonable. Analysis the factors influencing fatigue and diametrical growth shows that the internal pressure has a first-order influence on fatigue, followed by the radius of the guide arch, reel and the CT diameter. As the number of trip cycles increase, fatigue damage, residual stress and strain cumulatively increase, until CT failure occurs. Significant residual stresses remain in the CT cross-section, and the CT exhibits a residual curvature, the initial residual bending configuration of CT under wellbore constraints, after running into the hole, is sinusoidal. The residual stresses and residual bending configuration significantly decrease the buckling load, making the buckling and buckling release of CT in the downhole an elastic-plastic process, exacerbating the helical lockup. The conclusions drawn in this study will improve CT models and contribute to the operational and economic success of CT services.

Buckling Formation on Steel-Based Solar Cell Induced by Silicone Resin Coat and Its Improvement on Performance Efficiency (실리콘 고분자 수지의 버클링을 통한 스틸기반 태양전지의 효율 향상)

  • Park, Young Jun;Oh, Kyeongseok
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.519-524
    • /
    • 2019
  • Even though stainless steel foil is not a highly efficient material for film-type solar cell, it has strong passivation capability without additional process. In this study, silicone resin was employed during a-Si:H thin film solar cell fabrication for the purpose of planarization and electrical insulation. In the first stage of process, silicone resin was coat onto the stainless steel (STS) using spin coater with thickness of $2{\sim}3{\mu}m$ and followed by aluminum deposition using ion beam application. Unexpectedly buckling was formed during aluminum deposition process. After subsequent fabrication processes, solar cell performance was evaluated. In voltage-current data, slight increase of cell performance was obtained and interpreted by the increase of light scattering.

Performance of lightweight aggregate and self-compacted concrete-filled steel tube columns

  • AL-Eliwi, Baraa J.M.;Ekmekyapar, Talha;Faraj, Radhwan H.;Gogus, M. Tolga;AL-Shaar, Ahmed A.M.
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.299-314
    • /
    • 2017
  • The aim of this paper is to investigate the performance of Lightweight Aggregate Concrete Filled Steel Tube (LWCFST) columns experimentally and compare to the behavior of Self-Compacted Concrete Filled Steel Tube (SCCFST) columns under axial loading. Four different L/D ratios and three D/t ratios were used in the experimental program to delve into the compression behaviours. Compressive strength of the LWC and SCC are 33.47 MPa and 39.71 MPa, respectively. Compressive loading versus end shortening curves and the failure mode of sixteen specimens were compared and discussed. The design specification formulations of AIJ 2001, AISC 360-16, and EC4 were also assessed against test results to underline the performance of specification methods in predicting the compression capacity of LWCFST and SCCFST columns. Based on the behaviour of the SCCFST columns, LWCFST columns exhibited different performances, especially in ductility and failure mode. The nature of the utilized lightweight aggregate led to local buckling mode to be dominant in LWCFST columns, even the long LWCFST specimens suffered from this behaviour. While with the SCCFST specimens the global buckling governed the failure mode of long specimens without any loss in capacity. Considering a wide range of column geometries (short, medium and long columns), this paper extends the current knowledge in composite construction by examining the potential of two promising and innovative structural concrete types in CFST applications.