• Title/Summary/Keyword: Buckling effect

Search Result 752, Processing Time 0.026 seconds

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet (폭발 손상을 입은 강섬유 및 FRP 시트 보강 철근콘크리트 보의 국부손상 및 잔류성능 평가)

  • Lee, Jin-Young;Jang, Dae-Sung;Kwon, Ki-Yeon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.627-634
    • /
    • 2014
  • In this study, standoff detonation tests and static beam tests on $160{\times}290{\times}2200mm$ RC beams were conducted to investigate the effect of local damage on the flexural strength and ductility index. And also, blast resistance of RC beams strengthened with steel fiber and FRP sheet were evaluated by these tests. The standoff detonation tests were performed with charge weight of 1kg and standoff distance of 0.1m. After the tests, crater diameters and loss weights of specimens were measured to evaluate the local damage of specimens. Flexural strength and ductility index were measured by conducting the static beam tests on the damaged and undamaged specimens. As a test results, normal concrete specimen(NC) showed relatively large crater and spall diameters that caused weight loss of 23.5kg as a local damage. Whereas, steel fiber reinforced concrete specimen(SFRC) and FRP sheet retrofitted specimens(NC-F, NC-FS) showed higher blast resistance than NC by reducing crater size and weight loss. Flexural strength and ductility index were decreased in case of local damaged specimens by detonation. Especially, large decrease of flexural strength was shown in NC as compared with intact specimen and brittle failure was occurred due to buckling of compressive reinforcement. In case of specimens strengthened with steel fiber and FRP sheet, residual flexural strength and ductility index were increased as compared with NC. In these results, it is concluded that critical local damage can be occurred unless enough standoff distance can be assured even if the charge weight is small. and it is verified that strengthening method using steel fiber and FRP sheet can increase blast resistance.