• Title/Summary/Keyword: Buckling coefficient

Search Result 148, Processing Time 0.022 seconds

Shear buckling analysis of laminated plates on tensionless elastic foundations

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.697-709
    • /
    • 2017
  • The current study addresses the local buckling analysis of an infinite thin rectangular symmetrically laminated composite plate restrained by a tensionless Winkler foundation and subjected to uniform in-plane shear loading. An analytic method (i.e., one-dimensional mathematical method) is used to achieve the analytical solution estimate of the contact buckling coefficient. In addition, to study the effect of ply angle and foundation stiffness on the critical buckling coefficients for the laminated composite plates, the parametric studies are implemented. Moreover, the convergence for finite element (FE) mesh is analysed, and then the examples in the parametric study are validated by the FE analysis. The results show that the FE analysis has a good agreement with the analytical solutions. Finally, an example with the analytical solution and FE analysis is presented to demonstrate the availability and feasibility of the presented analytical method.

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.

A Proposed method of the Strength Calculation of Pipe Support (파이프 서포트의 내력 산정 방안)

  • 이영욱;최순주
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • Even though there is a guideline for the required strength of pipe support in inspection, it does not mean the nominal strength which can be used for the form work design. And, Concrete Specification defines that the pipe support should be designed according to the steel design guidelines but the design details are not provided, such as buckling length and the sectional modulus, etc. For the better prediction of strength of pipe support, the slenderness ratio of support which reflects the boundary condition should be considered. In this paper, the elastic buckling formula based on the slenderness is derived. The formula contains the strength reduction factor that consider the strength deduction caused by initial lateral deformation and is 0.65 consistently regardless of boundary conditions. And the coefficient of effective buckling length is calculated from the experiment.

  • PDF

Design of Thick Laminated Composite Plates for Maximum Thermal Buckling Load (최대 열적 좌굴하중을 갖는 두꺼운 복합재료 적층판의 설계)

  • Lee, Young-Shin;Lee, Yeol-Wha;Yang, Myung-Seog;Park, Bock-Sun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1761-1771
    • /
    • 1993
  • In this paper, the design of thick laminated composite plate subjected to thermal buckling load under uniform temperature distribution is presented. In the design procedures of composite laminated plates for maximum thermal buckling load. the finite element method based on shear deformed theory is used for the analysis or laminated plates. One-demensional search method is used to find optimal fiber orientation and, in the next step, optimal thickness is investigated. Design variables such as fiber orientation and ply thicknesses coefficient of plates are adopted. The optimal design for the symmetric or antisymmetric laminated plates consisted of 4 layers with maximum thermal buckling load is performed.

Linear buckling analysis of welded girder webs with variable thickness

  • Maiorana, Emanuele;Pellegrino, Carlo
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.505-524
    • /
    • 2011
  • Steel girder web panels have been subjected in recent decades, to a number of experimental and numerical studies but the mechanisms that regulate the behaviour of the panels composed by two subpanels with different thickness were not deeply studied. Furthermore specific design rules regarding the estimation of the buckling coefficient for panels with variable thickness are not included in the codes even if this is a common situation particularly for steel bridge girders with beams having significant height. In this framework,this work aims to investigate buckling behaviour of steel beams with webs composed of panels with different thicknesses subjected to both in-plane axial compression and bending moment and gives some simplified equations for the estimation of the buckling coefficient.

Secondary Buckling Behaviour of Plate under Inpane Compressive Loading (면내압축하중(面內壓縮荷重)을 받는 판(板)의 2차좌굴거동(次座屈擧動)에 관한 연구(硏究))

  • J.Y. Ko;T. Yao;J.K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.66-80
    • /
    • 1996
  • Recently, HT steel has been widely used in structure, and this enables to reduce the plate thickness. To use the HT steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behaviour of plat above primary buckling load is important. The plate under the load, that is called, secondary buckling load may undergo abrupt changes in wave form after primary buckling. This is very important when the collapse strength of the whole structures is considered. From this point of view, this paper discusses secondary buckling behaviour of thin plate under inplane compressive loading. A elastic large deflection analysis of plates with initial imperfection is performed assuming uniaxial compression, respectively, and the influence of secondary buckling is investigated. It is known that square plate is not influenced by non-symmetrical deflection coefficient but influenced by symmetrical deflection coefficient. Also, it has been found that rectangular plate($\alpha$=a/b) is influenced by all deflection coefficient, and the reduction of inplane stiffness of the plate after primary buckling is continued.

  • PDF

An Approximate Solution for the Local Buckling Coefficient of Pultruded I-Shape Compression Members (펄트루젼 I형 단면 압축재의 국부좌굴계수 계산을 위한 근사식의 개발)

  • Joo H. J.;Jung J. H.;Lee S.;Yoon S. J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.223-227
    • /
    • 2004
  • The pultruded structural shapes are usually composed of thin-walled plate elements. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling or the global buckling. Therefore, the stability limit state must be checked to design pultruded columns. In this research, the local buckling analysis of pultruded I-shape column was conducted for various composite materials using the closed-form solution. To establish the design guidelines for the local buckling of pultruded I-shape compression members, the simplified form of equation to find the local buckling coefficient of pultruded I-shape column was proposed as a function of mechanical properties and the width ratio of plate components using the results obtainde by the closed-form solution. In order to verify the validity of proposed solution, the results obtained by the proposed approximate solution were compared with those of the closed-form solution and the experimental results.

  • PDF

Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

  • Chemi, Awda;Heireche, Houari;Zidour, Mohamed;Rakrak, Kaddour;Bousahla, Abdelmoumen Anis
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.193-206
    • /
    • 2015
  • The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.